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ABSTRACT

The performance of automatic speech recognition (ASR) systems degrades greatly when speech is cor-

rupted by noise. Missing feature methods attempt to reduce this degradation by deleting components of a

time-frequency representation of speech (such as a spectrogram) that exhibit low signal-to-noise ratio

(SNR). Recognition is then performed using only the remaining components of the incomplete spectro-

gram. These methods have been shown to result in recognition accuracies that are very robust to the effects

of additive noise. However, conventional missing feature methods, which modify the classifier used to per-

form the recognition, suffer from the drawback that they are constrained to use the log-spectral vectors of

the spectrogram as features for recognition. It is well known recognition systems that use log-spectral fea-

tures perform poorly compared to systems that use cepstral features. 

In this thesis we propose two new approaches that recast the missing feature paradigm as a data com-

pensation problem, by reconstructing missing elements to obtain complete spectrograms. In the first

approach, referred to as cluster-based reconstruction, incoming log-spectral vectors from clean speech are

clustered. Missing spectrographic features from noisy data are recovered by first identifying the closest

cluster based on the values of the features that are present, and then estimating the missing values using

MAP procedures. The second approach, referred to as covariance-based reconstruction, uses MAP proce-

dures to estimate the value of the missing components of the spectrogram based on their correlations with

the elements that are present. Both methods take into account the bounds on the clean spectrogram

imposed by additive noise. In either case, cepstral features are computed from the reconstructed spectro-

grams and used for recognition without any modification of the speech recognition system. 

When corrupt regions of the spectrogram are known a priori, recognition accuracies resulting from

reconstruction methods are seen to be much higher than those obtained with the best current missing fea-

ture methods based on modification of the recognition system. The proposed spectrogram reconstruction

methods are also computationally less expensive than the best conventional missing feature methods. 

We also propose two methods that attempt to identify corrupt regions of the spectrographic representa-

tions of incoming speech. The first method utilizes noise spectrum estimates of vector Taylor series (VTS)

compensation for noise-corrupted speech, while the second method treats the identification task as a clas-

sic Bayesian classification problem. Combination of the best method to identify corrupt regions with the
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best method to reconstruct them produces recognition accuracies better than any other known algorithm for

speech in additive white noise. We also observe significant improvement in recognition accuracy for

speech in the presence of background music if the locations of corrupted spectrographic regions are known

a priori, but we have been less successful in blind identification of these corrupt regions for these signals.
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Glossary of terms

Bounded class-conditional imputation: Class-conditional imputation where estimates of missing compo-
nents are found using bounded MAP estimation using the distributions of the classes.

Bounded cluster marginal reconstruction: Cluster marginal reconstruction where missing elements
between  and an upper bound are integrated out of cluster distributions to estimate cluster member-
ship of vectors. Missing elements are estimated using bounded MAP estimation based on the distribu-
tion of the estimated cluster.

Bounded covariance-based reconstruction: Covariance-based reconstruction, where missing elements
are estimated using bounded MAP.

Bounded MAP estimation: MAP estimation where the estimated value of the variable is forced to lie
within an upper bound.

Bounded marginalization: Marginalization where missing components of spectral vectors between 
and a given upper bound are integrated out of the distributions of speech classes.

Class-conditional imputation: Missing-feature method where recognition is performed with incomplete
spectrograms. In order to compute the likelihood of any sound class during recognition, missing com-
ponents of spectral vectors are estimated based on the distribution of that class.

Classifier-compensation methods: Methods which modify the distributions of classes within the recog-
nizer to compensate for the effect of noise.

Classifier-modification methods: Missing-feature methods where the classifier is modified to perform
recognition directly using incomplete spectrograms.

Cluster-based reconstruction: Spectrogram reconstruction methods where spectral vectors are assumed
to be segregated into clusters. Missing components of spectral vectors are estimated based on the dis-
tributions of these clusters.

Cluster marginal reconstruction: Cluster-based reconstruction method where the cluster membership of
any vector is estimated by marginalizing the missing components of spectral vectors out of the distri-
butions of the various clusters.

Cluster oracle reconstruction: Cluster-based reconstruction where the true cluster membership of incom-
plete vectors is known a priori.

Cluster time-interpolated reconstruction: Cluster-based reconstruction method where preliminary esti-
mates of missing components of spectral vectors are obtained by linear interpolation along time, and
the preliminary estimates are used in estimating cluster membership of vectors.

Cluster membership: The cluster that any spectral vector belongs to, in the cluster based representations
used by cluster-based reconstruction methods.

Covariance-based reconstruction: Spectrogram reconstruction method where missing elements in spec-
trograms are estimated on the basis of their covariance with observed elements within the spectrogram.

Covariance individual reconstruction: Covariance-based reconstruction where missing elements in
spectrograms are individually estimated.

∞–

∞–
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Covariance joint reconstruction: Covariance-based reconstruction method where all missing elements
within any spectral vector are jointly estimated.

Data-compensation methods: Methods which modify the incoming feature stream to compensate for the
effect of noise on speech recognition systems.

Geometrical-reconstruction methods: Spectrogram reconstruction methods where missing elements of
spectrograms are estimated by extrapolation of, or interpolation between, adjacent elements in the
spectrogram.

Incomplete-spectrogram methods: Missing-feature methods where no information is assumed regarding
the missing elements in the spectrogram.

Linear interpolation along frequency: Geometrical-reconstruction method where missing elements are
estimated by linear interpolation between other observed elements within the same spectral vector.

Linear interpolation along time: Geometrical-reconstruction method where missing elements are esti-
mated by linear interpolation between observed elements within the same frequency band in adjacent
vectors.

Marginalization: Missing-feature method where recognition is performed with incomplete spectrograms.
Missing components in spectral vectors are integrated out of the distributions of the various sound
classes being considered by the recognizer.

MAP estimation: Maximum a posteriori estimation, where the value of a variable is estimated as the
value at which the a posteriori distribution of the variable, conditioned on a set of observed variables,
peaks.

Missing-feature methods: Methods which model the effect of noise as missing features in spectrograms
and perform recognition based on the information in incomplete spectrograms.

Oracle masks: Spectrographic masks that have been obtained based on knowledge of the true SNR of the
elements in the spectrograms of noisy speech.

Polynomial interpolation along frequency: Geometrical-reconstruction method where missing elements
are estimated by polynomial interpolation between other observed elements within the same spectral
vector.

Polynomial interpolation along time: Geometrical-reconstruction method where missing elements are
estimated by polynomial interpolation between observed elements within the same frequency band in
adjacent vectors.

Rational-function interpolation along frequency: Geometrical-reconstruction method where missing
elements are estimated by fitting a rational function to other observed elements within the same spec-
tral vector.

Rational-function interpolation along time: Geometrical-reconstruction method where missing elements
are estimated by fitting a rational function to observed elements within the same frequency band in
adjacent vectors.

Single cluster reconstruction: Cluster-based reconstruction where all spectral vectors are assumed to
belong to a single cluster.

Spectrogram reconstruction methods: Missing-feature methods where missing regions of incomplete
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spectrograms are estimated, to reconstruct complete spectrograms. Recognition is performed with fea-
tures derived from the reconstructed spectrograms.

Spectral subtraction: Noise cancellation algorithm that maintains running estimates of the noise spectrum
and subtracts them from the spectrum of noisy speech to estimate the spectrum of clean speech.

Spectral-subtraction-based mask estimation: Estimation of spectrographic masks based on the esti-
mates of the noise spectrum computed for spectral subtraction.

Spectrographic mask: Information relating to an incomplete spectrogram that tags individual elements of
the spectrogram as missing or observed.

Statistical-reconstruction methods: Spectrogram reconstruction methods where missing elements of
spectrograms are estimated based on their statistical relationships with the observed elements in the
spectrogram.

Unreliable-spectrogram methods: Missing-feature methods where the upper bound on the missing ele-
ments of the spectrogram is assumed to be known.

Vector Taylor Series (VTS): Noise compensation algorithm that obtains maximum likelihood estimates
of the noise spectrum and cancels this noise out of the parameters of noisy speech using an MMSE
estimator.

VTS-based mask estimation: Estimation of spectrographic masks for noisy speech that is based on the
estimate of the noise spectrum obtained by VTS.
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Chapter 1
Introduction

The performance of automatic speech recognition (ASR) systems degrades greatly when the speech

being recognized has been corrupted by noise [Acero 1993]. There are several reasons for this.

ASR systems are essentially statistical pattern classifiers that classify segments of sound as belonging

to one of a set of sound classes. The classification is not performed using the speech signal itself, rather, the

speech signal is parameterized into a sequence of feature vectors, and classification is performed using

these feature vectors. The feature vectors themselves are variously derived from the power spectrum of

short windowed segments, or frames, or speech. The ASR system learns the distribution of the feature vec-

tors belonging to any sound, from a corpus of training speech. During recognition, a segment of speech is

classified as belonging to the sound whose distribution is most likely to have generated the feature vectors

belonging to that segment.

When speech is corrupted by stationary noise, one resulting effect is that the distribution of the feature

vectors of the corrupted speech are no longer similar to the distributions learned from the training data.

This mismatch results in mis-classification and poor recognition [Moreno 1996]. This effect can be mini-

mized by training the recognition system with speech that has the same level of noise as the speech being

recognized. But even in this situation, the addition of the noise results in increased error in the estimation

of the spectrum of any frame of speech [Kay 1988], and therefore increases the inherent variability in the

feature vectors corresponding to any sound. As a result, the variance of the distributions of the various

sound classes increases, resulting in increased classification error, and increased mis-recognition over the

situation where both training and test speech are noise free. Finally, when the corrupting noise itself is non-

stationary, even training the system with speech corrupted to the same overall noise level as the test speech

is not helpful. This is because, although the overall noise level in the training and test data are identical,

this does not imply that the various examples of a sound in the training data are corrupted with the exact

kind of noise that the test data has been corrupted by. Mismatches between distributions learned by the

classifier and the distribution of the test data still persist.

The problem of reducing the mismatch between the distributions modeling the classes in the classifier

and the distributions of the test data can be approached in two ways. In the first approach the test data are
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“cleaned” in some manner in an attempt to make them similar to the training data whose distributions have

been learned by the classifier. We refer to methods that attempt to compensate the test data for the effect of

noise in this manner as data-compensation methods. In the second approach the distributions used by the

classifier to models the various sound classes are modified to be similar to the distributions of the test data.

We refer to methods that attempt to modify components of the classifier in this manner to compensate for

the noise as classifier-compensation methods.

Several data compensation methods and classifier compensation methods have been proposed in the lit-

erature. Data compensation methods such as codeword dependent cepstral normalization (CDCN) [Acero

1993], vector Taylor series (VTS) [Moreno 1996], spectral subtraction [Boll 1979] and Wiener filtering

[Porter 1984] attempt to compensate for the effect of the noise on the data based on estimates of the spec-

trum of the noise. Others such as multivariate Gaussian based cepstral compensation (RATZ) [Moreno

1996] and probabilistic optimal filtering (POF) [Neumeyer 1994] use explicit comparisons between data

that have simultaneously been recorded in the training and test conditions to modify the test data. Classifier

compensation methods such as parallel model combination (PMC) [Gales 1993] and model composition

[Varga 1990] modify the distributions of the sound classes to account for the effect of additive noise. Oth-

ers such as maximum likelihood linear regression (MLLR) [Leggetter 1994] on the other hand simply

transform the parameters of the distributions to best fit the noisy test speech.

The drawback with all of these methods is that they assume, either explicitly or implicitly, that the

underlying noise is stationary, and furthermore that the effect of the noise is representable by a linear trans-

formation of the parameters of the distribution of the data. Thus, while all of these methods have been

fairly successful against low to medium levels of stationary noise, i.e. noisy speech with signal-to-noise

ratios (SNR) 10 dB or greater, they are less effective at higher levels of noise and completely ineffective in

the presence of non-stationary noises [Raj 1997].

Two new approaches to robust speech recognition have been based on the observation that the human

auditory system preferentially processes the high-energy components of the speech signal while suppress-

ing the weaker components [Moore 1997]. These new approaches attempt to improve speech recognition

performance by deweighting the contribution of the low SNR components of the speech to the recognition

in some manner. Multi-band based approaches [Hermansky 1996] [Bourlard 1996] consider the fact that

different frequency bands of the speech signal may be corrupted at different SNRs. They therefore decom-



Chapter 1. Introduction 3

pose the speech signal into separate frequency bands, and construct separate speech recognition systems

for each band. The output of each of these recognition systems is then recombined to give the final output.

The weight given to the output of the recognition system corresponding to each frequency band is ideally

dependent on the SNR in that band, deweighting noisy bands with respect to the clean ones.

Missing-feature approaches [Cooke 1994] [Lippmann 1997], on the other hand, take into account the

fact that SNR may be local not only to frequency but also in time. Speech is transformed into the time-fre-

quency domain and represented as spectrographic images where the two axes of the image represent time

and frequency respectively, and the pixel value of each element in the image represents the energy of the

signal in that time-frequency location. Different regions of this spectrographic picture are corrupted to dif-

ferent degrees by the noise. In missing feature based approaches, the low SNR regions of this picture are

selectively erased, and recognition performed on the basis of the remaining incomplete spectrogram. Since

recognition is performed on the basis of incomplete spectrograms, we also refer to these methods as incom-

plete-spectrogram methods.

Incomplete-spectrogram methods have the advantage over other approaches that they make no assump-

tions, either explicit or implicit, about the stationarity of the corrupting noise. Also, they do not need to

have a knowledge of the fine structure of the spectrum of the noise, needing only the coarse descriptions of

the regions of the time-frequency plane as being either reliable or unreliable [Cooke 1994]. Incomplete

spectrograms methods have been shown to result in recognition accuracies that are remarkably robust to

high levels of noise corruption [Cooke 1999] [Cooke 2000].

All current incomplete spectrogram methods that have been reported in the literature so far are classi-

fier-compensation methods [Cooke 1994][Lippmann 1997][Renevey 1999]. They model the effect of the

incompleteness of the spectrographic data on the classifier and the classifier is modified to compensate for

the incompleteness of the data. We refer to these missing-feature methods that modify the classifier as clas-

sifier-modification methods in this thesis. In order for such methods to be feasible, the classifier has to be

trained with spectrographic features, i.e. spectra or log-spectra. 

This is a serious drawback with these methods. It is well known that when recognition is performed

with log spectra, the recognition accuracies obtained are much poorer than those obtained with other fea-

tures, such as cepstra, that have been derived from the log spectra [Davis 1980]. As a result, even the base-
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line recognition accuracy obtained with the cepstra of noisy speech with no compensation at all is

frequently superior to the accuracy obtained with log spectra, even after missing-feature based compensa-

tion has been applied.

What this thesis is about

In this thesis we recast the missing-feature approach to noise robustness as a data-compensation prob-

lem. Instead of performing recognition directly with incomplete spectrograms we attempt to estimate the

missing components of incomplete spectrograms and reconstruct complete spectrograms prior to classifi-

cation. Estimation of missing regions of incomplete data has been much reported on in the fields of statis-

tical analysis of data [Rubin 1987] [Quinlan 1989] [Ghahramani 1994]. However, to the best of our

knowledge, this approach has not been applied to noise compensation for speech recognition prior to this

work.

We refer to methods that estimate missing (noisy) regions of incomplete spectrograms to reconstruct

complete spectrograms as spectrogram reconstruction methods. 

The spectrogram reconstruction methods described in this thesis have several advantages over current

incomplete spectrogram methods: 

1) Since the reconstruction of the spectrogram is performed independently of the recognizer, the recog-

nizer need not be modified in any manner. 

2) They are more computationally efficient than classifier-compensation methods.

3) Since the reconstructed spectrograms can be transformed to cepstra, or other related features, and

recognition performed with them, much better recognition accuracies can be obtained than with

classifier compensation methods.

We approach the problem of estimating missing regions of spectrograms from two perspectives, one in

which the missing regions of the spectrogram are treated as being completely unknown, and the second in

which the noisy regions are assumed to be unknown, but bounded. We present methods which use simple

statistical representations, other than that used by the speech recognition system, in order to reconstruct the

missing regions. This gives us the freedom of using representations that are far simpler than that in the

speech recognizer, while also permitting us to utilize information that is not represented by the recognizer

to perform the reconstruction. We investigate several simple estimation techniques that reconstruct the
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missing regions of spectrograms based both on purely geometrical constraints, as well as statistically moti-

vated techniques that utilize the statistical correlations between various elements of a spectrogram. Experi-

ments show that the recognition performance obtained with cepstral features derived from such

reconstructed spectrograms is higher than that obtained with current missing feature methods that attempt

to perform recognition directly with the incomplete spectrograms.

This thesis is organized in two parts. In the first part, consisting of Chapters 2, 3, 4, 5 and 6, we treat the

noisy regions of speech spectrograms as completely unknown, or missing. In the second part consisting of

Chapters 7 through 9 we treat them as missing but bounded. 

In Chapter 2 we present a brief description of the speech recognition system, and also present a brief

overview of missing data methods in statistical analysis. We especially describe the statistical methods that

are applicable to techniques described later in the thesis. In Chapter 3 we describe the speech spectrogram,

and how the effect of noise can be modelled as missing features on the spectrogram. In Chapter 4 we

describe conventional missing-feature based recognition methods. In Chapter 5 we describe several infer-

ence methods that estimate the missing regions of incomplete spectrograms. In Chapter 6 we describe rec-

ognition experiments obtained with methods described in Chapter 5.

In Chapter 7 we present inference methods that assume that the unreliable regions of incomplete spec-

trograms are bounded, and describe experimental results with these methods. 

One serious problem with missing-feature based methods is that in order for them to be applied effec-

tively, the reliable and unreliable regions of the spectrogram have to be correctly identified. Although,

missing feature methods only require very coarse information regarding the corrupted spectrogram, i.e.

simple binary information about whether a particular element of the spectrogram is reliable or not, deriving

such information, especially when the speech has been corrupted by non-stationary noise, is very difficult.

In Chapter 8 we discuss this problem. 

In Chapter 9 we summarize our findings and present our conclusions and ideas for future work.
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Chapter 2
Background Information

2.1 Introduction

This thesis deals with the reconstruction of incomplete spectrograms to improve the performance of

speech recognition systems on noisy speech. Reconstruction of incomplete spectrograms is an exercise in

the inference of missing data in incomplete datasets, which is a well studied problem in statistics. The

problem addressed in this thesis therefore involves three notions:

1) The manner in which automatic speech recognition systems function

2) The effect of noise on speech recognition systems

3) Inference of missing data in incomplete data sets

In this chapter we aim to clarify these fundamental notions to establish a basis for the work described in

the following chapters. We first briefly outline the manner in which speech recognition systems function.

We confine our discussion to recognition systems based on Hidden Markov Models (HMM) since the work

described in this thesis has been evaluated using CMU Sphinx-III, an HMM based system. Nevertheless,

the techniques described in the thesis are not specific to HMM based systems, and can be used with other

statistical speech recognition systems as well. We then briefly describe the effect of noise on the perfor-

mance of speech recognition systems. We also describe several current methods of compensating for the

effect of the noise, and their drawbacks. Finally we present a brief review of existing literature on incom-

plete-data methods in other fields. Some methods which are explicitly used in the thesis are explained in

greater detail.

2.2 Overview of Automatic Speech Recognition (ASR) systems

ASR systems are essentially pattern classification systems [Rabiner 1993]. Any utterance of speech is

modeled as a sequence of sounds. These sounds may either be the phonemes in a language, words in that

language, or larger units, depending on the vocabulary of the system and the task being performed by it.

The complete set of sounds that the ASR system has to recognize forms the classes modeled by it. In this

discussion we assume without loss of generality that the sound classes modeled by the system are words.

The ASR system then classifies segments of speech as belonging to one of these classes. 
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Classification is not performed using the speech signal directly. Instead, the speech signal is parame-

trized into a sequence of feature vectors, or parameter vectors, and classification is performed using these

feature vectors. The feature vectors used are usually cepstral coefficients [Davis 1980], or variants of cep-

stra [Hermansky 1990] derived from power spectra of short windowed segments, or frames of speech.

Thus, a sequence of speech samples is transformed into a sequence of feature vectors each representing a

single frame of speech, which is used to perform recognition.

Let  represent the sequence of parameter vectors derived from the utterance being recognized. Auto-

matic speech recognition systems identify the sequence of words in that utterance using the optimal classi-

fier equation

(2.1)

where  is the recognized sequence of words in that utterance.  is the a priori probability that the

word sequence  was uttered and is usually specified by a language model. Further details of language

models can be found in [Katz 1987].  is the likelihood of  given that the  was the sequence of

words uttered. It is termed as the acoustic likelihood of the data and is obtained from the probability distri-

bution of all parameter vectors that could represent the sequence of words . In HMM-based speech rec-

ognition systems this probability distribution of sequences is modeled by an HMM. The following section

describes the hidden Markov model in greater detail.

2.2.1 HMM-based modeling of the distributions of sequence of vectors

In HMM-based recognition systems the mechanism that generates the sequence of parameter vectors

representing any word is modeled by an HMM [Rabiner 1993]. When generating the sequence, the genera-

tor is assumed to be in one of a finite set of states at any instant of time. A probability distribution function

is associated with each of these states, which are referred to as the state probabilities. Thus, to generate the

feature vector at any instant, the generator draws a vector from the distribution associated with the state it

is in at that instant. The vectors that the generator draws from a state distribution are said to belong to that

state. The HMM also has a set of transition probabilities associated with each state. The transition proba-

bilities of a state refer to the probability distribution of the states that the generator can be in at the next

S

Ŵ maxW P S W( )P W( ){ }arg=

Ŵ P W( )

W

P S W( ) S W

W
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instant, given that it is in that state at the current instant. The generator draws from this distribution in order

to determine which state it will be in at the next instant of time. If the generator is in state  at time instant

 after having been in state  at time , it is said to transit from state  to state  at time instant . The

transition probabilities and the state distributions are all specific to the word being modeled by the HMM.

Figure 2.1 shows an example of an HMM with 5 states. The HMM in this figure only permits transitions in

one direction. All transitions with probability 0 are not shown. This HMM has a non-emitting initial state,

and a non-emitting terminating state. Non-emitting states are states with which there are no probability dis-

tributions associated. Therefore no observations are generated when the generator is in these states. The

non-emitting initial state in figure 2.1 implies that at , i.e. just before the generator begins generat-

ing vectors, it is in the initial state where it does not generate any observations. Similarly, if the generator

enters the terminating state it can no longer transit to any of the other states in the HMM, nor can it gener-

ate any more observations. 

Thus, to generate a sequence of  vectors for the word, the generator transits through a sequence of

 states in the HMM, beginning with the non-emitting initial state and terminating in the final,

absorbing state. At each time instant it draws observations from the state distribution of the state it is in at

that time instant. The sequence of vectors so generated is said to be generated by the HMM.

j

t 1+ i t i j t

t 0=

Figure 2.1 Example of a 5 state HMM with one non-emitting initial state, and a non-emitting terminating state. Each
of the circles represents a state. The arrows represent valid transitions from the state, and the numbers below the
arrows represent the probability of that transition. For example, the arrows from state 1 indicate that if the generator
is in state 1 at time t, at time t+1 it can be in state 1 with probability 0.5, state 2 with probability 0.3 and state 3 with
probability 0.2. The dotted arrows point to the state distributions associated with that state. An observation is drawn
from this distribution every time the generator visits the state. The initial state (state 0) and the terminating state (state
4) have no state distributions associated with them, and no data are generated when the generator is in these states.
Note that in this figure all transitions point left to right. In a more generic HMM, transitions may occur in any direc-
tion, from any state to any other state.
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The model for the generating mechanism for a sequence of words is also an HMM and easily con-

structed by concatenating HMMs for individual words. Figure 2.2 shows an example where the HMMs for

three words have been concatenated to obtain an HMM modeling a sequence of three words.

The statistical parameters of the HMM representing a sequence of words  are the set of transition

probabilities, represented as a matrix , and the set of state probability distribution functions. The

matrix  consists of elements , which represents the probability that the generator will be in

state  in the next time instant, given that it is currently in state . Thus, for an HMM with  states, we

have

(2.2)

The state distribution of the th state is represented by , where  represents any parameter

vector that belongs to the th state. In speech recognition systems the various state distributions are usually

modeled as Gaussians or mixtures of Gaussians [Juang 1986]. Typically, for computational efficiency,

these Gaussians are assumed to have diagonal covariance matrices, i.e. covariance matrices where the off-

diagonal elements are all 0. For simplicity we represent the state distribution of the th state as 

(2.3)

Figure 2.2 Example of constructing the HMM for a sequence of words from the HMMs of individual words. The 
non-emitting terminating state of any word is merged with the non-emitting initial state of the next word. The merged 
state is no longer an initial state or a terminating state. However, it remains non-emitting, and no state distribution is 
associated with it. The resulting HMM has a non-emitting initial state, a non-emitting terminating state and several 
intermediate non-emitting states as well.
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where  denotes a Gaussian mixture distribution corresponding to the th state of the HMM

representing the word sequence  and  represents the set of parameters associated with it. We denote

the set of  for all the states in the HMM for  as .  and  represent the complete set of

parameters needed to uniquely identify the HMM modeling .

The probability of any vector sequence  that is generated by the HMM for  is now given by 

(2.4)

where  represents any state sequence that the generator can follow when generating , and  represents

the set of all possible state sequences. The state sequence  is, quite literally, a sequence of states, one for

every feature vector in . That is,

(2.5)

where  is the total number of vectors in the sequence , and  is the state associated with the th vector

in , . The probability terms in the right hand side of Equation (2.4) can now be written as

(2.6)

where  represents the probability of transiting from the th state (i.e the initial non-emitting state)

of the HMM for  to the first state in the state sequence , and  represents the probability of

transiting from state  to state . Equation (2.4) can now be rewritten as

(2.7)

Ideally, recognition would be performed as

MG X φk
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(2.8)

However, for easy implementation, HMM based speech recognition systems usually estimate not just

the best word sequence, but also the best state sequence associated with the word sequence. i.e. recognition

is performed as

(2.9)

which can be further expanded into

(2.10)

In order to evaluate Equation (2.10) fully, the term within the braces would have to be computed for

every possible word sequence in the language. This would be impractical. In practice, dynamic program-

ming methods are used [Viterbi 1967] to obtain locally optimal estimates for .

The CMU Sphinx-III HMM based recognition system has been used exclusively to evaluate missing

feature methods in this thesis. This is a phone-based recognition system. Words are further decomposed

into sequences of phones and the HMMs for words are built by concatenating the phone HMMs. Further,

in order to reduce the total number of parameters needed to construct HMMs for all the phonetic units

modeled by the system, the state distributions of states of the HMMs of the various phonetic units are

shared, i.e. the same distribution is used by the states of the HMMs of several phonetic units.

2.3 The effect of noise on speech recognition systems

Speech recognition systems function on the assumption that the distributions modeling the various

sound classes in the recognizer are representative of the speech being recognized. In other words, it is

assumed that the distributions of the feature vectors representing the various sound classes in the test data

are very similar to the corresponding distributions in the recognizer. When the distributions in the recog-

nizer have been trained from clean speech this is only true if the speech being recognized is clean as well.

When the speech being recognized has been corrupted in any manner the two distributions are no longer
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Ŵ



Chapter 2. Background Information 12

similar [Moreno 1996]. We can represent any noisy utterance as being a clean utterance that has been ren-

dered noisy by some transformation. If we represent the th feature vector of an utterance of clean speech

as , and the corresponding feature vector of the corrupted utterance as , we could represent the

relation between them as 

(2.11)

where  is the transformation that converts any clean speech feature vector to a noisy speech feature

vector. If we represent the distribution of the feature vectors of clean speech representing a sound  as

, and the distribution of the corresponding vectors of the corrupted speech as , we have

(2.12)

The recognizer models the sound  by the , the distribution of clean speech vectors for that

sound. However, the distribution of vectors in the test data for the sound  is . We see from

Equation (2.12) that  unless  is an identity transformation. This mismatch

between  and  causes the performance of the recognition system to degrade greatly.

This mismatch can be eliminated if the distributions in the recognizer are learned using speech that has

been subject to exactly the same kind of degradation as the test speech. However, even in this scenario, the

effect of corrupting noise is to increase the inherent variability between different instances of any sound

and the resulting recognition accuracy is significantly lower than when the data used to train the recognizer

and the test data are both clean. Further, this requires precise control over the recording conditions of the

test speech in order to keep them identical to that of the speech used to train the recognizer. In most practi-

cal situations mismatches between the distributions used by the recognizer and the distributions of the test

data persist. Figure (2.3) shows the recognition performance of a speech recognizer on speech that has

been corrupted by noise. As can be seen, the effect of noise is to degrade recognition accuracy greatly even

when the distributions in the recognizer are perfectly matched to the distributions of the noisy speech data. 

There are two possible approaches to reducing the mismatch between the distribution of test data and

the recognizer distributions. In the first approach the test data is transformed in some manner such that the

distributions of the transformed test data match the distributions in the recognizer. i.e.,  is transformed

t
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by a transformation  such that

(2.13)

Recognition is now performed with  instead of . This approach is referred to as the data

compensation approach, since the noisy test data are being transformed to compensate for the corrupting

noise.

The second approach to reducing the mismatch between the distributions in the recognizer and the dis-

tribution of the test data is to transform the recognizer distributions in some manner, such that they are now

similar to the test data distribution. i.e., the distributions  are transformed by a transformation

 such that

(2.14)

Recognition is now performed using  instead of . Since components of the

classifier are being modified to compensate for the noise, this approach is referred to as the classifier-com-

pensation approach.

In HMM-based systems the recognizer distributions are transformed by transforming the parameters of

the mixture Gaussian state distributions of the HMMs modeling the various speech sounds.

(2.15)
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Figure 2.3 Recognition accuracy as a function of the signal-to-noise ratio of the speech being recognized. The lower
curve represents a “mismatched” recognizer, where the recognition system has been trained on clean speech, but the
test speech is noisy. The upper curve represents a “matched” recognizer, where the recognition system has been
trained with speech that has been subject to the same level of noise as the test speech.

Td  ( )

P Td Y t( )( )( ) P S t( )( )≅

Td Y t( )( ) Y t( )

Ps S t( )( )

Tm  ( )

Tm Ps S t( )( )( ) Ps Y t( )( )≅( )

Tm Ps S t( )( )( ) Ps S t( )( )

PW k, Y t( )( ) MG S t( ) Tm φk
w( );( )≅



Chapter 2. Background Information 14

where  is the distribution that would have represented the th state of the HMM for the word

sequence , had the recognizer been trained with . Recognition is performed using  as the

parameters of the state distributions.

Several data-compensation and classifier-compensation methods have been proposed in the literature.

Among data compensation methods, methods such as CDCN [Acero 1993] and VTS [Moreno 1996]

model the effect of noise on the feature vectors of clean speech using a parametric model and learn the

parameters of this model based on samples of the noisy utterance being recognized and the a priori distri-

butions of clean speech. They then attempt to transform the feature vectors of the noisy speech back to

their clean counterparts using the learned parameters. Other methods such as RATZ [Moreno 1996] and

POF [Neumeyer 1994] use “stereo data” - data that have been simultaneously recorded in clean and noisy

environments - to learn the relations between the feature vectors of clean speech and those of noisy speech.

This relationship is later used to estimate the clean speech feature vectors corresponding to the vectors of

any noisy utterance. Still other methods such as spectral subtraction [Boll 1979] and Wiener filtering [Por-

ter 1984] estimate the spectrum of the corrupting noise and use it to reduce the noise level in the noisy

speech signal, rather than on its feature vectors.

Among classifier compensation methods, methods such as PMC [Gales 1993] and model composition

[Varga 1990] use analytical models of the effect of noise on the feature vectors of clean speech and use

these models to transform the parameters of the Gaussian mixture state distributions of the HMMs. Meth-

ods such as MLLR [Leggetter 1994], on the other hand, simply transform the parameters of the mixture

Gaussian state distributions using an affine transform, to best fit the noisy speech. The parameters of the

affine transform are learned from “adaptation data” - data that have been recorded under the same condi-

tions as the noisy speech being recognized.

All of these methods assume, either explicitly or implicitly, that the noise that is corrupting the speech

signal does not vary much over the course of the utterance. The noise is assumed to affect the feature vec-

tors (or the distributions of the feature vectors) of any instance of a particular sound in exactly the same

manner as it affects every other instance of the same sound. As a result, while these methods are fairly suc-

cessful at compensating for stationary noises they are, in general, ineffective in the presence of non-sta-

tionary noises [Raj 1997].

PW k, Y t( )( ) k

W Y t( ) Tm φk
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The effect of non-stationary corrupting noises on speech recognition accuracy is different from that of

stationary noises. Figure 2.4a compares recognition accuracy obtained on speech corrupted by stationary

white noise, with that obtained on speech corrupted by music, which is a non-stationary signal. Figure 2.4b

shows the improvement in recognition accuracy obtained when CDCN compensation is applied to both

cases. We observe that at any given SNR the recognition accuracy obtained with speech that has been cor-

rupted by music is greater than that obtained with speech corrupted by stationary noises. This is because at

any given SNR the energy in music is much more localized in time due to its non-stationary nature than the

energy in white noise. As a result, while some regions of the speech get corrupted to a greater degree by

music than they do by white noise, other regions do not get corrupted much. The higher recognition perfor-

mance of the recognizer in these less corrupt regions results in greater overall accuracy.

On the other hand CDCN compensation does not improve the recognition performance of speech cor-

rupted with music, while it is quite effective on white noise. Similar results are obtained for speech cor-

rupted by other non-stationary noises, and for other compensation methods. In general, while the effect of

non-stationary noises is not as damaging to recognition accuracy, it is not possible to compensate for the

effect of the noise effectively with current compensation techniques. Clearly, new approaches are required

to handle non-stationary noises.

It is well known that human beings are sell able to comprehend speech that has been heavily corrupted

by both stationary and non-stationary noise [Lippmann 1997][Miller 1950]. It is also known that human

listeners are able to comprehend speech which has undergone considerable spectral excisions. For exam-

ple, normal conversation is possible with speech that has been either high-pass or low-pass filtered with a
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Figure 2.4a Recognition accuracy obtained with speech
corrupted by white noise, and speech corrupted by a
segment of music, at various SNRs.

Figure 2.4b Relative improvement in recognition error
rate obtained by applying CDCN compensation to
speech corrupted by corrupted by white noise and music
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cutoff frequency of 1800Hz [Fletcher 1953]. Similarly, speech that is occluded by interfering signals and

corrupting noises is easily comprehended by humans. The human auditory system also exhibits the so-

called capture effect [Moore 1997] by which locally more intense signal components dominate the neural

response, suppressing the weaker components, sometimes completely. Phenomena such as excisions,

occlusion, and the capture effect can be represented as occlusions of spectro-temporal regions in time-fre-

quency representations of the speech signal. They therefore suggest that there is sufficient redundancy in

the speech signal for it to be recognized based only on a fraction of spectro-temporal information present in

it.

This observation has motivated two new approaches to robust recognition of noisy speech: the multi-

band recognition approach, and the missing-feature approach. In these approaches the recognition system

is modified to concentrate only on those portions of the speech signal that have been less corrupted by

noise, rather than the entire signal. Let us represent the th component of the th feature vector of an utter-

ance of clean speech as , and the corresponding component for the corrupted speech as .

Let  be the transformation corrupting  such that 

(2.16)

The new approaches attempt to improve recognition by concentrating only of those components of the

noisy speech for which , i.e. the components for which the difference between the

noisy speech and the clean speech, , is small, where  is defined as

(2.17)

For these components the mismatch between the distributions in the recognizer and the distributions of

the test data is also small. Components for which  is large are either deweighted or discarded com-

pletely.

Multi-band recognition approaches decompose speech into separate frequency bands and perform rec-

ognition independently on the various frequency bands. The recognition hypotheses of the individual

bands are combined to obtain the final recognition hypothesis. During recognition the contributions of fre-

quency bands where the error between the parameters of clean speech and those of noisy speech are

expected to be large are given less weight with respect to the bands where the error is expected to be

k t
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smaller [Hermansky 1996] [Bourlard 1996]. 

Missing-feature approaches, on the other hand, do not decompose speech into frequency bands. Instead,

they assume that those components of a spectrographic representation of speech for which  is large

are in fact unknown or missing (hence the name “missing features”), and they perform recognition based

only the remaining components [Cooke 1994][Lippmann 1997]. In other words, they model the effect of

noise on speech as that of obscuring some of the components of the spectrographic representation, result-

ing in incomplete spectrographic data for that utterance. The problem of recognizing noisy speech then

becomes one of classification with incomplete data. We describe how the effect of noise on speech can be

modeled as missing spectrographic data in Chapter 3. Missing-feature approaches and the problem of clas-

sification with incomplete data are discussed in greater detail in Chapter 4.

Both multi-band and missing-feature approaches have the advantage that they do not make any explicit

assumption about the characteristics of the noise corrupting the speech. The procedure for compensating

for the noise is independent of whether the noise is stationary or non-stationary. They do however need to

know beforehand which components of speech have been badly corrupted by the noise, and which have

been less affected. The problem of estimating this information in the context of missing-feature approaches

is discussed in greater detail in Chapter 8.

Missing-feature approaches have the advantage over multi-band approaches that they do not assume

that different frequency bands are independent of each other. However, they have the disadvantage that

they are restricted to performing recognition using spectral features. This restriction is discussed in greater

detail in Chapter 4. 

In this thesis we attempt to eliminate this restriction by reconstructing those components of a spectro-

graphic representation of speech for which  is large prior to recognition. We are, in effect, re-for-

mulating the missing-feature approach as one of inference of missing data, rather than that of classification

with incomplete data. The problem of inference of missing data in incomplete data sets has been well stud-

ied in the field of statistics and other related fields. In the following section we briefly review the literature

on the topic from these fields.

E t k,( )

E t k,( )
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2.4 Incomplete Data Methods

Incomplete-data methods are methods that are applied for the analysis or study of data sets where some

of the components are missing. Usually they deal with the estimation of the missing components of the

data set. Alternately, they may deal with the estimation of the statistical properties of the data, based only

on the incomplete data set.

Data sets could be incomplete for several reasons. For example, data could be missing due to the char-

acteristics of the process that generated the samples. Incomplete data are frequently encountered in sample

surveys [Madow 1983] where some respondents chose not to respond to certain queries in the survey, or

prefer not to respond to the questionnaire at all. Data occlusion is another reason for incomplete data

[Ahmed 1993]. This could happen, for example, where some of the regions of interest in a picture are

occluded by irrelevant objects, or when some portions of a sound recording are occluded by noise. Incom-

plete data may also result from loss of data. Segments of sound recordings may be lost due to damage to

the recording media. Portions of data may be lost during transmission over a communication channel. Data

points that are obviously non representative can also give rise to missing data [Rubin 1987]. For example,

in a survey where one of the queries is the age of a person, a response such as 937 is obviously erroneous

and needs to be treated as unknown. Similarly, speech samples that are corrupted by very high levels of

noise can be treated as unknown.

We note from the above examples that there are several mechanisms that render data unobservable to

the observer. These mechanisms themselves, in turn, can have different characteristics. In the case of the

incomplete or erroneously completed sample surveys, the non-response to a particular query may be

related to the query itself (e.g. people who are unwilling to divulge their incomes), or to the actual response

to the query (e.g. people belonging to a particular demographic group being unwilling to identify them-

selves as such). The non-response to a particular query may even be related to the response to other queries

in the survey (e.g. people belonging to a particular demographic group being unwilling to divulge their

incomes). Similarly, in the case of the picture with occluded regions also the missing data mechanism can

vary. The mechanism can be completely random, as in the case of cars moving down a street occluding the

objects on the other side of the street. The mechanism could be related to the content of the picture, e.g.

bees occluding regions of flowers. In speech corrupted by noise, the mechanism causing incomplete data
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depends on the content of the sound. The high energy and clearly enunciated regions of the signal are more

likely to remain comprehensible than low energy regions.

In all the above cases we are able to distinguish between a truth and a missing data mechanism. By truth

here we refer to the true value of the missing components of the data. In the case of the sample survey, for

example, this would be the response that the respondent would have given to a query had he responded to

it. For the picture this would be what the camera would have captured had the occluding object not been in

place. When data is lost in transmission or storage this would be the value the data point had before it was

lost. For all of these cases there exists a hypothetical data set corresponding to the incomplete data set,

where all the components are present. The terminology we adopt [Little 1987] refers to this hypothetical

data set, where no components are missing, as the complete data. Data sets that are missing some of their

components are referred to as incomplete data. The missing data elements or components are referred to as

missing data, or missing features. The mechanism that renders some of the complete data unobservable,

thereby resulting in incomplete data, is referred to as the missing data mechanism.

Missing data mechanisms are usually categorized into three types [Ghahramani 1993]. The three cate-

gories are:

1) Missing Completely At Random (MCAR): The missing data mechanism in this case is completely

random. As a result, the probability that any component of the complete data will be deleted by the

mechanism is independent of both the component itself and the rest of the data set.

2) Missing At Random (MAR): Here the probability that any component of the complete data will be

deleted depends on the value of the observed data.

3) Not Missing At Random (NMAR): Here the probability that any component of the complete data

will be deleted depends both on the value of the observed data, as well as the value of the deleted

data point itself.

Of these, MCAR missing data patterns are the most difficult to predict (based on the complete data), but

the least problematic, because of the unsystematic nature of the deletions. MAR and NMAR missing data

mechanisms on the other hand cause systematic deletions of data, and while the missing data patterns are

more predictable, they can be very damaging to any analysis based on the data.

It is difficult, if not impossible, to perform any meaningful statistical analysis of the processes underly-

ing any data if the data are incomplete. Similarly, classification of, or prediction on the bases of incomplete
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data is not simple. Standard statistical procedures cannot be directly applied to such data sets since such

procedures assume the existence of complete data. 

Most incomplete data methods in the literature deal with the estimation of the missing data. The process

of estimating the missing data components is referred to as imputation. The earliest used method of impu-

tation was the so-called mean imputation [Ahmed 1993]. In mean imputation missing components of a

vector are filled in by the average value of that component. This problem has the obvious disadvantages

that it under represents the variability in the data, and also ignores the correlations between the various

components of the data completely. The US Census Bureau attempts to handle missing data points in its

sample surveys by a procedure known as Hot Deck Imputation [David 1983]. The hot deck procedure

finds, for each incomplete data vector, a matching complete data vector, i.e. the data vector that is closest

in terms of the components that are present in both vectors. The missing components of the incomplete

data vector are then filled in with the corresponding components of the matching complete vector. Hot

deck imputation, once again, has the shortcoming that the estimate of the missing data components are

based on a single complete vector in the data set, ignoring any global properties of the data set. It also

ignores the possibility that the matching vector itself may have been an outlier in the components of inter-

est.

Several imputation methods have been proposed in the literature that use decision trees to impute the

values of missing data points [Quinlan 1989]. Of these, methods based on Classification And Regression

Trees have been most popular [Breiman 1984]. In these methods, the set of all complete data vectors is par-

titioned recursively into a tree based on a set of logical “questions”. Individual complete vectors form the

leaves of this tree. Incomplete data vectors are passed down the tree based on their answers to the questions

at each node in the tree, until they reach a leaf. The missing components of the vector are obtained from the

vector at the leaf. While this procedure is simple and useful for multinomial data sets, their use becomes

very complicated for data that can take values from a continuous range.

A more statistically motivated procedure that is frequently used is Regression Imputation [Mendenhall

1996]. The missing components of incomplete data vectors are imputed as a linear regression of the com-

ponents of the vector that do exist. The regression coefficients are estimated from any existing set of com-

plete data vectors. The drawback of this procedure is that all imputed values fall along a single regression

line thereby under representing any variation inherent in the data. Also, there are implicit symmetry
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assumptions about the distribution of the data that may not be valid. 

Expectation Maximization, or EM, is a statistical technique that is highly suited to the estimation of the

distributions of incomplete data sets [Dempster 1977]. The procedure iteratively finds the “expected

value” of each of the missing elements in the data set, and uses these expected values to find the distribu-

tion of the data. EM can be further reinforced by the use of a priori statistics of the value of the missing

components. This procedure is usually referred to as Bayesian EM [Ghahramani 1994].

Most missing data methods described in the literature are most suited to handle multinomial data sets

and data such as incomplete sample surveys. Also, most of them assume that the incomplete data has

occurred due to the deletion of elements from the complete data, and that no other data corrupting mecha-

nisms are involved. Additionally, in most of the missing data methods described above, the missing com-

ponents of an incomplete dataset are estimated based only the properties of observed portion of the

incomplete data.

In the following section we describe three methods that assume a priori knowledge of the distribution

of complete data, and use these in conjunction with the observed data to estimate the missing components

of the data.

2.5 Statistical methods for estimating missing data

Statistical methods assume a priori knowledge of the distribution of the complete data, and use this

knowledge to estimate the missing data. It is useful to introduce some mathematical notation here in order

to simplify the explanations presented in the rest of the chapter. We represent the hypothetical complete

data by the symbol .  in turn has two components, the observed data  and the missing data .

The complete data is the combination of the two, a relation that we denote by .

Statistical estimation methods assume that either the probability distribution of the complete data, or

that some of the statistical properties of the data that are derivable from this distribution, are known. Let

 represent a parametric model for the distribution of the complete data, where  represents the

parameters of the parametric model. If  were Gaussian,  would refer to the mean and the vari-

ance of the distribution. From this distribution the conditional probability distribution  and

X X Xo Xm

X Xo Xm,=

P X φ;( ) φ

P X φ;( ) φ

P Xm Xo φ;( )
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the conditional distribution , can be derived. Statistical estimation methods can be employed

where any of these distributions are known.

2.5.2 Minimum Mean Squared Error (MMSE) estimation 

In MMSE estimation the missing data are estimated to minimize the expected mean squared error

between the estimates and the true value of the elements, conditioned on the observed data [Therrien

1992].

(2.18)

where  is the estimate for the missing data, and  is the true value of . Only the first and second

moments of the conditional distribution of the missing data,  are needed for MMSE estima-

tion.

2.5.3 Maximum Likelihood (ML) estimation 

In ML estimation the missing data are estimated so as to maximize the conditional likelihood of the val-

ues of the observed data  [Therrien 1992]. 

(2.19)

This method bases the estimates of the missing values entirely on the observed data , with no refer-

ence to the inherent statistical distribution of the missing data. It has the advantage however, that the a pri-

ori distribution of the missing data,  need not be known.

2.5.4 Maximum A-Posteriori (MAP) estimation 

MAP estimation has been extensively used in the methods described in this thesis. We therefore

describe the MAP estimation procedure in somewhat greater detail than the previous methods. In MAP

estimation the missing data are estimated to maximize their likelihood, conditioned on the values of the

P Xo Xm φ;( )

X̂m minXm
E Xm Xm

t–
2

Xo[ ]
 
 
 

arg=

X̂m Xm
t Xm

P Xm Xo φ;( )

Xo

X̂m maxXm
P Xo Xm φ,( ){ }arg=
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observed data [Therrien 1992].

(2.20)

We note that when  is Gaussian, MMSE and MAP estimates are identical since a Gauss-

ian distribution is completely described by its first and second moments.

MAP estimation can be simplified to a linear regression when the distribution of the complete data is

Gaussian. For simplicity, we assume that the elements of the complete data  have been arranged into a

vector, such that the observed components of the complete data form the initial portion of this vector, and

the missing components form the training portion. The observed and missing data,  and , are also

arranged into vectors, such that

(2.21)

This assumption does not lead to any loss of generality since any set of  elements can be represented

as a vector in an  dimensional space, and the order in which the components are listed in this vector

merely denotes the order in which the various dimensions are arranged.

Let  be a Gaussian distribution with mean vector  and covariance matrix . The distri-

butions of  and ,  and  would therefore also be Gaussian [Papoulis

1991]. If the mean vectors of  and  are given by  and  respectively, and

their covariance matrices by  and  respectively, we have

(2.22)

and

(2.23)

where  is the cross covariance between  and , and .

It can now be shown that  is given by

X̂m maxXm
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(2.24)

where  is a normalizing constant. Combining Equation (2.20) and Equation (2.24), we get 

(2.25)

The MAP solution given in Equation (2.25) is best visualized using the two dimensional example

shown in figures 2.5a and 2.5b. In this example  is a two dimensional vector, with components , and

, of which  has been observed and  is missing. In the example the observed value of  is . The dis-

tribution of , , is a Gaussian, and is shown in figure 2.5a. 

Since  is known to be 2, we are only interested in the distribution of vectors with . Figure 2.5b

shows the slice of the distribution  at . The vertical face in figure 2.5b represents

, where  is a scaling constant. This distribution is observed to peak at ,

which indicates that the most frequently occurring values of  lie in an small region around . The MAP

estimate for  is therefore .
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Figure 2.5a Gaussian distribution of a 2 dimensional 
random vector. The mean of the Gaussian is at [1,1]. 
The X and Y components have covariance 1.0, and the 
covariance between X and Y is 0.5.

Figure 2.5b The same Gaussian sliced at X = 2. The flat 
surface in the figure represents the distribution of all 
vectors whose X component is 2. This distribution peaks 
at Y = Y1. Thus Y1 is the MAP estimate of Y when X is 2
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Figure 2.6 shows a projection of the Gaussian shown in figure 2.5a the -  plane. The solid line in the

figure traces value of  at which a slice of the Gaussian peaks at any value of . i.e. the line traces the

MAP estimate for  as a function of the observed value of . As can be seen, the relationship between the

two is a line, the equation for which is given by Equation (2.25). 

2.6 Summary

In this chapter we have presented a brief overview of automatic speech recognition systems and a brief

survey of current literature on missing data methods. We have also explained some statistical missing data

inference methods in relatively greater detail.

In the next chapter we describe time-frequency representations of speech, and how the effect of noise

on speech can be modeled as missing features in these representations.
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Figure 2.6 Cross section of Gaussian in figure 2.5a. The solid horizontal line shows the observed value of X. The cir-
cle on the intersection of the solid diagonal line, and the dotted line, shows where the distribution of vectors with X=2
peaks. This is the MAP estimate of Y when X=2. The solid diagonal line shows how the position of this peak varies at
each value of X.
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Chapter 3
Modeling the effect of noise as missing features

3.1 Introduction

Missing-feature methods model the effect of noise on speech as the deletion of regions of time-fre-

quency representations of the speech signal. While there are several time-frequency representations where

the effect of noise can be so modeled, the time-frequency representation most commonly used is the spec-

trogram [Rabiner 1978]. This is the representation that has been used in this thesis. 

In this chapter we describe the spectrogram, and its mel-spectral variant, which we specifically use. We

also describe how noise affects the spectrogram, and how the effects can be modeled as missing features. 

3.2 The Spectrogram

The spectrogram is a commonly used two dimensional representation of the speech signal. It is a picto-

rial representation of the short-time periodogram [Therrien 1992] of the signal. The short-time peri-

odogram of a signal is given by

(3.1)

where

(3.2)

where  is a window of length . Each windowed segment of the signal is referred to as a frame

of the signal.  is the value at  of the Fourier transform of a frame of speech centered around .

 is also called the short-time Fourier transform [Rabiner 1978] of the signal. 

The short-time periodogram of a speech signal therefore consists of a sequence of power spectra, one

for each sample in the signal.  represents the power in frequency  at time instant  in the signal.

In practice, the short-time periodogram is not computed for every frequency, or at every time instant. It is
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sufficient to compute  at only  points along the frequency axis, and for every th point

in the sequence, for it to be completely invertible. In practice, for speech recognition systems, the time axis

is sampled less frequently: typically the short-time Fourier transform is computed for every th sample in

the sequence. The short-time periodogram derived from it therefore consists of a sequence of power spec-

tral vectors, each of which has  components and represents a short segment of the speech signal.

The spectrogram represents the short-time periodogram as a picture as in Figures 3.1 and 3.2. In these

figures the abscissa represents the time ( ) axis, the ordinate represents the frequency ( ) axis, and the

color, or the intensity of the picture at any location  in the picture encodes the value of

, where  is the th component of the th power spectral vector in the short term

periodogram. Although the term spectrogram usually refers to these pictorial representations, we also use

it to refer to the logarithm of the short-time periodogram. Thus the spectrogram consists of a sequence of

log-spectral vectors where , the th component of the th log-spectral vector in the spectrogram is

given by

(3.3)

X l ω,( ) 2L 1+ L 2⁄

L

2L 1+

Figure 3.1 This figure shows the wideband spectrogram
of the utterance “Redefine Area Alert”. The length of
the analysis windows was 10ms. Adjacent windows
were overlapped by 5ms. The dark bands represent
peaks in the spectral envelope. These peaks are called
“formants” and their trajectories are characteristic of the
sounds in the speech signal.

Figure 3.2 This figure shows the narrowband spectro-
gram of the same utterance. The length of the analysis
window was 30ms. Adjacent windows were overlapped
by 5ms. The harmonic nature of speech is evident in the
figure due to the length of the analysis windows. How-
ever the formants are not so clearly visible in this figure.
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The difference between Figures 3.1 and 3.2 is in the length of the analysis window, . Longer win-

dows result in greater frequency resolution, but lower resolution of quick changes in the spectrum with

time.

The MEL spectrogram

A variant of the short-time Fourier transform of the speech signal that is used commonly by speech rec-

ognition systems is the mel-spectral representation [O’Shaughnessy 1987]. The mel spectrum, in principle,

tracks the power at the output of a band of filters, called the mel filters. In practice, the mel spectrum of a

frame of speech is approximated by integrating over the DFT of the windowed speech signal as follows:

(3.4)

where  is the th component of the mel spectrum in the th analysis window and  is the th

DFT coefficient of the impulse response of the th mel filter.  is the th frequency component of the

DFT of the th analysis window of the speech signal . The mel spectrum can be viewed as an spec-

trally smeared version of the short-time periodogram. Frames are typically 25 ms long, and overlap by 15

ms for the mel-spectral representation. 

The mel spectrogram is simply obtained from the mel spectrum as

(3.5)

Thus, the mel spectrogram consists of a sequence of log mel-spectral vectors, each of which has  compo-

nents, where  is the total number of mel filters. 

The mel spectrogram can be viewed as a variant of the spectrogram that uses an spectrally smeared ver-

sion of the short-time periodogram. In subsequent chapters of this thesis we therefore use the term “spec-

trogram” to refer to both the spectrogram described in Section 3.2 as well as the mel spectrogram. We use

the term “spectral vector” to represent both the log-spectral vectors of the spectrogram, and the log-mel-

spectral vectors of the mel spectrogram. We generically refer to the components of a spectral vector as fre-

quency components of that vector, irrespective of whether the underlying spectrogram is a true

spectrogram or a mel spectrogram. This should not cause any confusion, however, since all spectrogram-
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related methods described in this thesis apply equally to both kinds of spectrograms.

All experiments in this thesis were conducted with mel spectrograms. Typically, speech recognition

systems use 40 mel filters to parametrize broadband speech. However, for all the experiments in this thesis

we have used only 20 filters covering the frequency range. Figure 3.3 shows the mel spectrogram of a

speech utterance. The abscissa represents the frame index, the ordinate represents the mel filter index. The

color/shade of the picture at any  encodes the value of the corresponding . Since the normal

spectrogram described in Section 3.2 is obtained from the short-time Fourier transform of the signal, it can,

in principle, be inverted to retrieve the speech signal (provided the phase information in the short-time

Fourier transform is available). The mel spectrogram, on the other hand, cannot be inverted to retrieve the

speech signal, except to a very crude approximation.

3.3 Effect of noise on the spectrogram

When the speech signal is corrupted by additive noise, we have

(3.6)

where  is the noisy speech signal,  is the clean speech signal, and  is the noise that has been

added to the signal. The short-time Fourier transform of the noisy signal is given by

l k,( ) Sx l k,( )

Figure 3.3 Mel spectrogram of the utterance “Redefine Area Alert”. 20 mel filters covering the frequency range 150
Hz to 8 KHz have been used for this representation. The vertical axis represents the index of the mel filter. The hori-
zontal axis represents the index of the mel-spectral vectors in the spectrogram. The analysis windows were 25 ms
long. Adjacent windows are overlapped by 15 ms.
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(3.7)

(3.8)

where  is the short-time Fourier transform of the noise. If we assume that the noise is uncorrelated

to the speech signal, the short-time periodogram of the noisy signal is given by [Oppenheim 1989]

(3.9)

where  is the short-time periodogram of the noise. The signal-to-noise ratio (SNR) in the spectro-

gram of the noisy signal at any  is given by

(3.10)

As can be seen from Equations (3.9) and (3.10) above, the SNR of the elements of the spectrogram is a

function of both time and frequency. Typically, for any level of noise, the spectrogram would have regions

of very high SNR, as well as regions of very low SNR. As the global SNR of the noisy utterance decreases

the proportion of high-SNR regions decreases, while the proportion of low-SNR regions increases. Figure

3.4 shows a quantized version of the wideband spectrogram of an utterance of speech corrupted to 20 dB

by white noise. All regions of the spectrogram where the local SNR is less than 0 dB are colored white and

all regions where the SNR is greater than 0 dB are colored black. Figure 3.5 shows a similar quantized

spectrogram of speech corrupted to a global SNR of 0dB. As is apparent from the two pictures, the fraction

of the pictured covered by the black regions is considerably lesser in Figure 3.5 than in Figure 3.4. Con-

versely, the fraction of the picture colored white, i.e. low SNR regions, is considerably higher in Figure

3.5. 

The same logic can be applied to the mel spectrogram to show that the mel spectrogram of the noisy

speech signal given in Equation (3.6) can be expressed as the sum of the mel spectrum of the clean speech

signal and the mel spectrum of the noise

(3.11)

Similarly to the spectrogram, the local signal to noise ratio of the mel spectrogram of the noisy speech sig-
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nal, given by

(3.12)

varies with both frame index  and filter index . The mel spectrogram of noisy speech also exhibits both

regions of high SNR and regions of low SNR. Figure 3.6 shows the SNR of the mel spectrogram of an

utterance of speech corrupted to 10 dB by white noise. The abscissa represents the frame index and the

ordinate the mel filter index. The SNR is coded by gray shade - the darker the color, the greater the SNR.

As can be seen from the figure, there are several regions of high SNR, and several other regions of very

low SNR. In this figure the lowest SNR regions correspond to segments where there is no speech at all and

the signal consists entirely of noise.

3.4 Modeling the effect of noise as missing features in the spectrogram

As mentioned in Chapter 2, there is empirical evidence to the effect that human listeners concentrate on

the high energy regions of the speech [Moore 1997], effectively ignoring the low energy regions in dealing

with noise. In other words, the evidence is taken from the so-called reliable spectro-temporal regions of

Figure 3.4 Quantized spectrogram of an utterance of
speech that has been corrupted to 20 dB by additive
white noise. All regions of the spectrogram where the
local SNR is greater than 0dB (i.e. where the speech
energy was greater than the noise energy) are colored
black. All regions with local SNR less than 0 dB are col-
ored white. Only frequencies up to 5 KHz have been
shown in the figure.

Figure 3.5 Quantized spectrogram of the same utter-
ance, when corrupted to 0 dB by additive white noise.
Once again, all regions of the spectrogram with local
SNR greater than 0 dB have been colored black, and all
regions with local SNR less than 0 dB have been col-
ored white. Once again, only frequencies up to 5 KHz
have been shown. The fraction of white regions here is
clearly much greater here than in figure 3.4.
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speech, while ignoring or deweighting the so-called unreliable regions. It stands to reason that an identical

concept could be applied to automatic speech recognition systems as well. If the evidence used for recogni-

tion were derived only from the reliable regions of the spectrogram, eliminating the unreliable regions, the

recognition performance of the system would be expected to become much more robust to noise.

One way of measuring the “reliability” of any region in the time-frequency plane is to measure the SNR

of the signal component in that region. The higher the SNR the greater the reliability of the signal compo-

nents in that region, and the lower the SNR the lower the reliability. In order to eliminate low-reliability

regions from the spectrogram we would therefore erase all low-SNR regions of the spectrograms, retaining

the high-SNR regions of the spectrogram alone. 

Figure 3.7 shows the spectrogram of a noisy utterance. Figure 3.8 shows the same spectrogram, where

all those portions of the spectrogram where the noise energy was greater than the speech energy, i.e. where

the local SNR was less than 0 dB, have been termed unreliable and erased. The resultant picture has several

elements missing. We refer to the pattern of present and deleted regions in the spectrogram as the spectro-

graphic mask for the spectrogram. We would now have to perform the task of recognizing what has been

said in the utterance, a statistical inference task, based on this incomplete picture.

In the Figures 3.7 and 3.8 all regions of the spectrogram where the local SNR was less than 0 dB have

been deemed unreliable. The threshold of 0 dB used here was arbitrarily chosen. Cooke et. al. [Cooke

1999] report that regions of the spectrogram where the SNR is lower than 15 dB are unreliable, and con-

Figure 3.6 Local SNR of the elements of the mel-spectrogram of an utterance corrupted to 10dB by additive whi
noise. The SNR is gray coded - the darker the color the higher the SNR of the element.
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tribute negatively to recognition performance. Using their definition, all regions of the spectrogram where

the local SNR is less than 15dB would be deemed unreliable and erased. Our experiments (reported in

Chapter 6) indicate that the optimal SNR threshold below which the spectrogram regions begin to affect

recognition performance poorly lies between 5 dB and -5 dB. 

All statements in the above discussion apply to mel spectrogram as well. All regions with a local SNR

below a preset threshold could be deemed unreliable and erased. Recognition would have to be performed

on the remaining figure. Figure 3.9 and Figure 3.10 show the mel spectrogram of an utterance of noisy

Figure 3.7 Wideband spectrogram of an utterance of
speech that has been corrupted to 15 dB by additive
white noise. The utterance is “Redefine Area Alert”.

Figure 3.8 Wideband spectrogram of the same utterance
when all regions with a local SNR less than 0 dB have
been deleted. The white regions in the figure represent
the deleted regions of the spectrogram.

Figure 3.9 Mel spectrogram of an utterance of speech
that has been corrupted to 10 dB by additive white
noise. The utterance is “Redefine Area Alert”.

Figure 3.10 Mel spectrogram of the same utterance
when all regions with a local SNR less than 0 dB have
been deleted. The white regions in the figure represent
the deleted regions of the spectrogram.
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speech, and the same spectrogram where unreliable elements have been erased, respectively.

3.5 Summary

In this chapter we have described the spectrographic and mel-spectrographic representations of the

speech signal. We have also described how the effect of noise corruption can be modeled as deletions of

regions of the spectrogram. The result of such deletions are incomplete spectrograms. In the next chapter

we will describe conventional methods of recognizing speech with incomplete spectrograms.
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Chapter 4
Recognizing speech with incomplete spectrograms

4.1 Introduction

As explained in Chapter 2, a speech recognition system is a statistical pattern classifier. Statistical pat-

tern classification is the problem of identifying which of a set of  classes a given data set  belongs to

[Duda 1973]. Given a set of classes , and the distribution of the data belonging to each of the classes

, the optimal statistical pattern classifier estimates the class  that a data set  belongs

to as [Duda 1973]

(4.1)

where  is the likelihood of  given that it belongs to the th class , and  is the prior

probability of the th class.  is the a posteriori probability of the class 

Consider a situation where some components of the data set are missing or occluded (i.e. they cannot be

observed or measured due to some reason). Let  represent the observed portion of , and  the miss-

ing portion. The complete data is the combination of the observed and missing data, i.e. .

In this case Equation (4.1) becomes

(4.2)

Clearly, this cannot be directly evaluated since  is not known and therefore its likelihood cannot be

computed. We are therefore faced with the problem of classification with incomplete data.

In the context of speech recognition systems the problem would be stated in the following manner. Let

 represent the sequence of parameter vectors derived from the utterance being recognized. The optimal

classifier given by Equation (4.1) becomes

(4.3)

where  is the recognized sequence of words in that utterance,  is the likelihood of  given that
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 was the sequence of words uttered, and  is the prior probability that  was uttered. Let  be a

spectrogram with some components missing.  can be decomposed into its observed and missing compo-

nents as , where  is the observed portion of the spectrogram and  is the missing por-

tion. Equation (4.3) then becomes

(4.4)

Once again, this cannot be evaluated directly since the value of  is not known. Thus the problem of

recognizing speech with incomplete spectrograms is also one of classification with incomplete data.

In order to perform classification (or recognition) with incomplete data (or spectrograms) it becomes

necessary to develop procedures that can compensate for the missing data in some manner. When applied

to speech recognition systems, we refer to these procedures as incomplete-spectrogram methods of recog-

nition. Traditional incomplete-data methods such as those described in section 2.4 deal with analysis of

data with components missing, or with inference of missing data. However, the final goal here is not to

analyze spectrograms with missing regions, or even to infer the values of the missing regions, but rather to

perform classification or recognition when some of the data are missing. The solution to the incomplete

data problem in this situation has to keep the final goal (of classification or recognition) in mind, and in

this respect it varies significantly from missing data inference methods.

There are two possible approaches to handling the problem of classification with incomplete data. The

first approach is the so called data imputation approach where the missing portion of the data, , are

estimated somehow. Classification is then performed using the estimated value, 

(4.5)

One specific imputation based solution that is well suited to estimates used for classification is the so-

called class-conditional imputation. Class-conditional imputation utilizes the distributions of the data as

modeled by the classifier, in order to obtain statistical estimates for the missing components. This has been

the imputation method of choice for speech recognition researchers and has been extensively investigated
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and reported on [Cooke 1994][Lippmann 1997]. 

The other approach to recognizing speech with incomplete spectrograms is to reformulate the classifi-

cation so as to perform the classification based on the observed components alone. This approach is

referred to as the marginalization method since the unobserved components are marginalized out of the

classification procedure. This has been the most successful method for recognition with incomplete spec-

trograms, and has also been extensively reported [Cooke 1999][Lippmann 1997][El-Maliki 1999].

Both class-conditional imputation and marginalization modify the manner in which the classifier, or

recognizer, computes the a posteriori probabilities of the various classes in order to facilitate classification

or recognition with incomplete data. We therefore refer to them as classifier-modification methods.

The following sections describe class-conditional imputation and marginalization in greater detail.

4.2 Class-conditional imputation

In class-conditional imputation a separate estimate of missing data  is obtained for each of the

classes , using the distribution of that class, conditioned on the observed data . The Maximum A

Posteriori (MAP) estimation procedure described in section 2.5.4 is used for the estimation. The a posteri-

ori probability of any of the classes computed using the estimates of the missing data obtained using the

distribution of that class. The classification procedure is therefore given by

(4.6)

where  is the MAP estimate of the missing data obtained assuming that the complete data 

belonged to the th class , conditioned on the observed data . This procedure gets its name because

the estimates of the missing data are conditional to the class being considered and are specific to that class.

Figure 4.1 shows a schematic representation of the class-conditional imputation procedure.

When applied to a speech recognition system class-conditional imputation performs recognition as

(4.7)
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where , the MAP estimate of , is dependent on the particular word hypothesis being considered.

(4.8)

As explained in section 2.2.1, in HMM-based speech recognition systems the recognizer estimates not

just the best word sequence, but also the best state sequence associated with the word sequence. Equation

(4.7) and Equation (4.8) therefore get modified to

(4.9)

where  represents any valid state sequence that can be generated by the HMM for . The estimate for

the missing data is given by

(4.10)

where the second term is dependent only on  since  is redundant once  is known. We recall that the

state sequence  is simply a sequence of states, one for every spectral vector in . 

(4.11)
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Figure 4.1 Schematic example for class-conditional imputation. The two ellipses represent the cross sections of the
Gaussian distributions of the two classes in a two-class classification problem. An incomplete vector is to be classi-
fied as belonging to one of these classes. The solid line shows the X component of the vector whose Y component is
missing. The MAP estimate for the complete vector obtained using the distribution of the class represented by the
dashed ellipse, is given by the dashed line. Similarly, the MAP estimate obtained using the distribution of the dash-
dotted ellipse is shown by the dash-dotted line. In class-conditional imputation, the a posteriori probability of the
dashed class is computed using the dashed line, and the a posteriori probability of the dash-dotted class is computed
using the dash-dotted line. The class with the higher likelihood is chosen as the estimate of the class that the complete
vector belongs to.
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where  is the total number of spectral vectors in  and  is the state associated with the th vector in

. The estimate for the missing components is therefore given by

(4.12)

If we refer to the individual spectral vectors in  as  and separate the missing and observed com-

ponents of  into  and  respectively, we get

(4.13)

where  refers to the estimate of , the vector of missing components in , the th vec-

tor of , when the word hypothesis being considered is  and the state sequence being considered is .

Since HMMs assume that the individual vectors of the spectrogram are independent, Equation (4.12) leads

us to

(4.14)

The right hand side of Equation (4.14) is independent of both the word sequence  and the complete

state sequence , and is only dependent on the particular state  whose likelihood is being considered.

Therefore in computing the likelihood of any state sequence that includes  we would use  as

the estimate of the missing components of . The implication of Equation (4.9), Equation (4.13) and

Equation (4.14) is that the missing components of a vector are estimated separately for every state consid-

ered during recognition, conditioned on the observed components of that vector, and based on the distribu-

tion associated with that state. In the computation of the likelihood of any state for any vector, the

estimates for the missing components of that vector that were obtained using the distribution of that state

are used. 

4.3 Marginalization

Another method of solving the problem of classification with incomplete data is to perform the classifi-
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st Ŝm W s, , t( )

S t( )



Chapter 4. Recognizing speech with incomplete spectrograms 40

cation based on the observed data alone. The optimal classifier in this case is given by 

(4.15)

where  is the likelihood of the observed data, given that the data belongs to the th class.

Distribution of the classes are usually defined on the complete data  and not on the observed components

 alone. i.e. the defined distribution for any class  is  and not

. Indeed, it may be difficult to specify the distributions of the observed components alone since

the precise set of observed components may vary from data set to data set. As a result it becomes necessary

to obtain the distribution of the observed components by integrating the distribution of the complete data

over all the missing components:

(4.16)

 is traditionally referred to as the marginal distribution of  and the process of obtaining

 from  is referred to as marginalization. Optimal classification is performed using the

marginal distributions obtained using Equation (4.16).

(4.17)

Since the classification is being performed using distributions that have been obtained by marginaliza-

tion, the procedure of classifying with marginal distributions is also referred to as marginalization. Figure

4.2 shows a schematic representation of marginalization based classification with incomplete data. 

When applied to a speech recognition system marginalization based recognition with incomplete spec-

trograms is performed as

(4.18)

Once again, since the distribution of the data associated with any word sequence  is defined on the
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complete spectrogram rather than on the observed components alone, the marginal distributions of the

observed components of the spectrogram would have to be obtained by integrating out the missing compo-

nents from the distribution. The optimal recognition would now be defined over the marginal distributions

so obtained as

(4.19)

HMM-based speech recognition systems jointly estimate the best state sequence along with the word

sequence. Equation (4.19) therefore gets modified to

(4.20)

where  represents any valid state sequence that can be generated by the HMM for . As mentioned

in Equation (4.11), , where  is the state associated with the th vector in .
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Figure 4.2 Schematic example for marginalization. In the left panel the two ellipses show the cross section of the
Gaussian distribution of each of the classes. The sold line shows the X component of the vector whose Y component
is missing. In marginalization the Y component of the two class distributions is eliminated by integrating it out of the
distributions. The resulting distributions give only the distribution of the X components of the classes. The right panel
shows the distribution of the X components of the two classes. Since the original distribution was Gaussian, these are
also Gaussian. The Y component no longer figures in the problem. In this reduced situation, the a posteriori probabil-
ity of the classes is computed based on the likelihood of the X component of the incomplete vector (given by the solid
line) is computed on the Gaussians shown and the class with the higher a posteriori probability is chosen as the esti-
mate of the class that the complete vector belongs to. 
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Ŵ maxW maxs P s W( )P W( ) P
∞–

∞

∫ So Sm s,( )dSm 
 
 

argarg=

s W

s s1 s2 s3 … sN, , , ,[ ]= sk k S



Chapter 4. Recognizing speech with incomplete spectrograms 42

Referring to the individual vectors of  as  and the missing and observed components of  as

 and  respectively as before, we get

(4.21)

Combining Equation (4.20) and Equation (4.21), the HMM assumption of independence of individual

vectors in the spectrogram leads us to

(4.22)

An alternate way of viewing Equation (4.22) is that the missing components in each vector of the spec-

trogram are integrated out of the distributions of all the states in the recognizer, in order to compute the

likelihood of that vector. Since the set of missing components can vary from vector to vector this integra-

tion would have to be performed for every vector in the spectrogram.

4.4 Experimental results

The effectiveness of class-conditional imputation and marginalization in recognizing speech based on

incomplete spectrograms was evaluated on incomplete spectrograms with simulated patterns of missing

elements. Incomplete spectrograms were generated by erasing random elements of a mel-spectrographic

representation of speech so as to obtain the desired fraction of missing elements. No noise was added to the

observed regions in the spectrogram. We refer to this procedure of generating incomplete spectrograms as

the random-drop mechanism, and the paradigm of evaluating incomplete-spectrogram methods on such

spectrograms as the random-drop paradigm. 

It is important to note here that the random-drop mechanism is not a realistic model for the effect of

noise on the spectrograms of speech by any means. It is merely a useful paradigm for the quick evaluation

of missing-data techniques, and is used only as a preliminary test for the techniques developed in this the-

sis. The true performance of these techniques can only be evaluated on speech corrupted by noise. The

S S t( ) S t( )

Sm t( ) So t( )

P So Sm s,( ) P So 1( ) Sm 1( ) So 2( ) Sm 2( ) … So N( ) Sm N( ) s1 s2 … sN, , ,, , , , , ,( )=
 

P So Sm s,( ) P So n( ) Sm n( ) sn,( )
n 1=

N

∏=

Ŵ maxW maxs P s W( )P W( ) P
∞–

∞

∫
n 1=

N

∏ So n( ) Sm n( ) sn,( )dSm n( )

 
 
 
 
 

argarg=



Chapter 4. Recognizing speech with incomplete spectrograms 43

deletions induced by noise tend to be much more systematic and occur in blocks. We describe the true

nature of deletions induced by noise in Chapter 6 in greater detail. Nevertheless, the random-drop para-

digm remains a very useful paradigm for evaluating the efficacy of missing-feature methods, since the pat-

terns of missing regions are not biased by the systematic behavior of any corrupting noise. Furthermore,

the additional effect of noise on the observed regions of the spectrogram need not be considered. 

Figure 4.3 shows a typical mel spectrogram when different fractions of the spectrogram have been ran-

domly erased. In all of our experiments the mel-spectral representation with 20 mel filters, i.e. a mel spec-

trogram where the individual vectors have 20 components, has been used. 

Experiments were run using the DARPA Resource Management (RM) database [Price 1988] on the

Figure 4.3 Examples of a mel spectrogram with randomly missing regions. The top left panel shows the original mel
spectrogram for the utterance “Redefine Area Alert”. The top right panel shows the same spectrogram when 40% of
its elements have been randomly deleted. The white portions of the picture represent the deleted regions. The bottom
left panel shows the spectrogram when 60% of its elements have been randomly deleted. The bottom right panel
shows it with 90% of its elements deleted.
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CMU Sphinx-III HMM based recognition system. Continuous HMMs with single Gaussian state distribu-

tions were trained. The 20 dimensional log-mel-spectral vectors were used as the features to train the rec-

ognition system. The system was trained with 2880 utterances of uncorrupted spectrograms. The test set

consisted of 1600 utterances from the RM database. Random elements were dropped from the spectro-

grams of the test data as described above. 

Figure 4.4 shows the recognition accuracy obtained using class-conditional imputation and marginal-

ization as a function of the fraction of elements missing in the test spectrograms. As can be seen, these

methods are highly effective at handling missing data in spectrograms. Class-conditional imputation

results in recognition accuracies comparable to those obtained with uncorrupted spectrograms when 70%

of the elements in the spectrogram are missing. Marginalization performs recognition using the optimal

classifier, given only the observed elements of the spectrogram. It is therefore expected to perform better

than class-conditional imputation. We observe from Figure 4.4 that marginalization is indeed far more

effective than class-conditional imputation. The recognition accuracy obtained when 90% of the spectro-

gram is missing is only slightly worse than that obtained with the uncorrupted spectrogram. While these

results speak highly of the these methods, they also seem indicative of the high degree of redundancy in the

speech signal. This is in agreement with human performance which is very robust to high degrees of degra-

dation or spectro-temporal excision of the speech signal.

We would like to point out the anomalous results seen in Figure 4.4 whereby the recognition accuracy

obtained with spectrograms where 80% of the elements have been deleted is actually superior to the perfor-
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Figure 4.4 Recognition accuracy as a function of drop fraction for class-conditional imputation and marginalization.
The horizontal axis show the drop fraction, i.e. the fraction of elements deleted from the spectrogram. The vertical
axis shows the recognition accuracy obtained using the incomplete spectrograms.
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mance obtained with complete spectrograms. We do not have a satisfactory explanation for this behavior.

We hypothesize that this behavior is characteristic to the Resource Management database used in these

experiments. Other researchers who have used this database have obtained similar results with the random

drop paradigm [Cooke 1994]. However, this behavior has not been seen with other databases.

4.5 Drawbacks with classifier modification methods

While class-conditional imputation and marginalization are very effective at recognizing speech based

on spectrograms with random elements missing, they suffer from several drawbacks. 

Both class-conditional imputation and marginalization are classifier compensation methods. They

attempt to compensate for the missing data either by estimation on the basis of, or modification of, the dis-

tributions of the classes. In order to be able to either estimate the missing components based on the distri-

butions of the classes, as in class-conditional imputation, or to be able to marginalize out the missing

components, it becomes essential that the distributions be defined on the same parameters where the miss-

ing components are identified. Since components of the spectrogram are missing, it becomes necessary to

train the recognizer using spectrographic features. As a result recognition can only be performed using log

spectral vectors. Figure 4.5 explains this limitation schematically.

This limitation gives rise to several problems:

1) It is known that, with uncorrupted vectors, the performance of HMM based recognition systems is

Figure 4.5 Block diagram explaining classifier compensation methods of recognition with incomplete spectrograms.
The speech recognition system has the two modules. The feature extraction module extracts features from the speech
signal. The recognition module performs recognition with the features. In classifier compensation techniques, the fea-
ture extraction module generates incomplete spectrograms. The recognizer recognizes speech based on these incom-
plete spectrograms. Thus, the recognizer has to be trained on spectrographic features.
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much better when the recognizer is trained using cepstra, rather than log spectra [Davis 1980]. Table

4.1 compares the recognition accuracy obtained on clean speech using cepstra with that obtained

using log spectra. Clearly, the accuracy obtained with cepstra is much higher. Similar situations arise

with other kinds of classifiers which may perform better with other features than with spectral vec-

tors.

2) Difference and double-difference parameters are commonly used to improve recognition perfor-

mance. Difference parameters are computed as the difference between vectors.

(4.23)

where  typically takes values between 1 and 4.  is the double-difference parameter vector

at time ,  is the difference parameter vector at time , and  is the spectral vector at time

. If an element of either  or  is missing the corresponding element in  can-

not be computed, and would therefore also be missing. It is easy to see that the fraction of missing

elements can be up to twice as high in the difference parameters as in the spectral vectors. Similarly,

the fraction of missing elements in the double-difference parameters can be up to four times as high

as the spectral vectors themselves. Thus, the missing feature methods described in this chapter

would have to compensate for the much higher fractions of missing elements in the difference and

double-difference parameters, reducing the contributions of these parameters to recognition perfor-

mance greatly.

3) Mean normalization is a procedure by which the mean of the spectral vectors in any utterance is sub-

tracted from all the vectors in the utterance. Variance normalization similarly normalizes the vectors

in the utterance by their variance. Both procedures have been shown to improve the recognition per-

formance of speech recognition systems. However, when the spectrographic parameters that are

used for recognition have missing elements, the estimates of the means and the variance of the spec-

Recognition 
accuracy with log 
spectral vectors

Recognition 
accuracy with 

cepstral vectors

63% 82%

Table 4.1  Comparison of the recognition accuracy obtained with log-spectral vectors with the recognition accuracy 
obtained with cepstral vectors on the RM database. In both cases an HMM-based recognizer with 2000 tied states, 

each modeled by a single Gaussian, was used.
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tral vectors can be biased by the patterns of the missing elements. This can render both mean nor-

malization and variance normalization ineffective.

The main reason for all of the problems above is that class-conditional imputation and marginalization

attempt to perform classification with incomplete spectrograms, directly.

The data-compensation approach to the missing feature paradigm

In this thesis we recast the problem of recognition with incomplete spectrograms as a data compensa-

tion problem. Instead of performing recognition directly with incomplete spectrograms, we reconstruct all

the missing regions of the spectrograms in a preliminary pre-processing step. We call this the spectrogram

reconstruction approach. Cepstral features can now be derived from the fully reconstructed spectrogram

and used to perform recognition. Since the reconstruction of spectrograms is done independently of the

recognizer, the recognizer need not be modified in any manner. Figure 4.6 represents the proposed

approach as a block diagram.

If recognition is to be performed using spectrographic features, the data-compensation approach is sub-

optimal to classifier-modification methods. This is because the reconstruction approach uses estimates of

the missing data, and these are bound to be erroneous to varying degrees, depending on the manner in

which they are obtained. In such a situation it can be argued that classification based on the observed data

alone is more optimal than classification that uses estimates for the missing data [Moreno 1996]. This

argument is also borne out by the fact that recognition accuracies obtained using marginalization, which

Figure 4.6 Block diagram explaining the data-compensation approach to recognition with incomplete spectrograms.
The missing regions of the incomplete spectrograms are reconstructed in the feature extraction module itself. Thus,
the output of the feature extraction module is a complete, reconstructed spectrogram. This reconstructed spectrogram
can then be transformed to any feature of choice, if desired, before being passed on to the recognizer. The recognizer
works on complete features, and can work with any feature extracted from the complete spectrogram.
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uses only the observed data, are higher than that obtained using class-conditional imputation which uses

estimates of the missing data.

There are, however, many advantages to the data-compensation approach. The primary advantage is

that, since the complete reconstructed spectrogram is now available, the recognizer is no longer con-

strained to perform recognition using spectrographic features. We can derive a more optimal set of param-

eters from the reconstructed spectrogram and use these features to perform the recognition. It is expected

that the improvement in classification accuracy obtained due to the use of the more optimal feature set

more than offsets the reduction in accuracy occurring due to the use of estimated values for the missing

data in classification. Furthermore, since the complete spectrogram, or the set of cepstral or other features

derived from the complete spectrogram, are now available computation of difference parameters and vari-

ance and mean normalization can be performed in the usual fashion. Another advantage is that since a

complete spectrogram is now available for recognition, the recognizer itself need not be modified in any

manner to account for the missing data. The missing feature estimation procedure can be performed inde-

pendently of the recognizer, permitting any standard recognizer to be used. Finally, the proposed procedure

permits reconstruction methods that use different models for speech than that used by the recognizer. The

spectrogram reconstruction procedure can be performed using very simple statistical and parametric mod-

els of speech spectrograms. The resulting methods can be much simpler and much more computationally

efficient than classifier compensation methods such as class-conditional imputation and marginalization.

We investigate spectrogram reconstruction methods for recognition with incomplete spectrograms in

the following chapters.
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Chapter 5
Spectrogram reconstruction methods for missing data

5.1 Introduction

In this chapter we address the problem of estimating missing regions of incomplete spectrograms to

reconstruct complete spectrograms. We investigate several simple spectrogram reconstruction methods

that estimate missing elements based on the geometric structure of speech spectra and on simple statistical

information culled from available corpora of uncorrupted speech. Since this thesis is primarily concerned

with speech recognition, our goal is not simply good reconstruction or analysis of spectrograms but also

that of achieving good recognition performance with the reconstructed spectrograms. The developed tech-

niques are therefore evaluated based on the recognition performance achieved with the reconstructed spec-

trograms.

The simplest manner of reconstructing missing regions in spectrograms would be to do it based only on

the geometrical placement of the observed regions of the spectrogram. We refer to these as geometrical

reconstruction methods since all the information used to reconstruct the missing regions is present within

the spectrogram, i.e. it is local to the spectrogram. No additional sources of information are used. 

The features of a spectrogram show continuity across both frequency and time. Therefore, it can be

expected that the frequency components of the spectral vectors in the spectrogram show statistical depen-

dencies both with other components within the same vector as well as with the components of the other

vectors in the spectrogram. Where additional corpora of uncorrupted speech are available, the statistical

relations between the various components of the spectrogram can be learned from these corpora. The sta-

tistical relations learned can be “vector statistics”, i.e. the distribution of spectral vectors and the statistical

relationship between the various frequency components within spectral vectors, or “covariance statistics”,

i.e. the statistical relationship between the components of different vectors in the spectrogram. These statis-

tical relations can then be used to condition the reconstruction of missing features. We refer to these spec-

trogram reconstruction methods as statistical reconstruction methods

In the following sections we investigate three types of reconstruction algorithms: 

1) Geometrical reconstruction methods based on linear and non-linear interpolation



Chapter 5. Spectrogram reconstruction methods for missing data 50

2) Statistical reconstruction methods that utilize vector statistics learnt from uncorrupted spectrograms

of clean speech to reconstruct incomplete spectrograms

3) Statistical reconstruction methods that use covariance statistics learnt from uncorrupted spectro-

grams to perform reconstruction. 

We evaluate all the spectrogram reconstruction methods described in this chapter both on the basis of

the accuracy of the reconstruction and on the recognition accuracy of a speech recognition system which

uses the estimated spectrograms. The random-drop paradigm described in Section 4.4, wherein randomly

chosen elements of the spectrogram are deleted, has been used to evaluate all the reconstruction methods.

We would like to reiterate here that the random-drop paradigm is not a realistic model for the effect of

noise on speech spectrograms. When deletions in spectrograms are noise induced the missing regions in

the spectrogram do not occur at random. Instead they occur in blocks and are systematic. Another differ-

ence between deletions generated by the random-drop paradigm and noise-induced deletions is that in the

random-drop paradigm it is assumed that the locations of the missing elements are known a priori. When

deletions in the spectrogram are noise induced, the locations of the deleted regions would not be known a

priori and would have to be estimated. Thus, it should not be expected that recognition results obtained

with deletion patterns generated by the random-drop paradigm would carry over to spectrograms with

noise-induced deletions. However, the random-drop paradigm is a useful tool for preliminary evaluation of

the spectrogram reconstruction methods, and has been used only to that end in this chapter. We evaluate the

efficacy of the spectrogram reconstruction methods developed in this chapter on noise-induced deletions in

Chapter 6.

In the rest of this chapter we follow the notation introduced in earlier chapters to denote a spectrogram

by . The observed portion of the spectrogram is denoted by  and the missing portion by . We rep-

resent an arbitrary spectral vector as  and the th spectral vector in the spectrogram  by . The

entire spectrogram consists of the sequence of spectral vectors , represented

more compactly as, , where  represents the total number of spectral vectors in the spec-

trogram. The missing components of the th spectral vector,  are represented by  and the

observed components by . The th frequency component of the th spectral vector, , is repre-

sented by . The sequence of components , represented more

S So Sm

S t S S t( )

S 1( ) S 2( ) S 3( ) … S N( ), , , ,

S t( ) 1 t N≤ ≤, N

t S t( ) Sm t( )

So t( ) k t S t( )

S t k,( ) S t 1,( ) S t 2,( ) S t 3,( ) … S t K,( ), , , ,



Chapter 5. Spectrogram reconstruction methods for missing data 51

compactly as , comprises the entire spectral vector , where  is the total number

of frequency components in the vector. In a mel spectrogram  would refer to the total number of mel fil-

ters being used (Section 3.2). 

The following section deals with geometrical reconstruction methods.

5.2 Geometrical reconstruction methods

The simplest method of reconstructing a missing element in a spectrogram is by interpolating between

adjacent observed elements in the spectrogram. Since the spectrogram has a two-dimensional support (fre-

quency and time) these elements could be adjacent along either of the axes, frequency or time. When the

elements used for interpolation are adjacent along the frequency axis, we refer to it as interpolation along

frequency. When the elements are adjacent in time we refer to it as interpolation along time.

The interpolation used could be simple linear interpolation, or it could use other higher-order functional

forms such as polynomials, rational functions, or splines. We will now describe and evaluate missing-fea-

ture reconstruction by linear and non-linear interpolation, both along frequency and along time.

5.2.1 Linear interpolation

The simplest form of interpolation is linear interpolation. Consider any sequence of numbers

, where the samples in the interval  are unknown or missing, i.e. the values

 are missing. Linear interpolation based estimates of the missing values are obtained by

drawing a straight line between the nearest known neighbors,  and , and reading the

estimated values of  through  off this line. Mathematically, the estimated value  for any

missing element  in the range  is given by [Press 1992]

(5.1)

Linear interpolation along frequency: Linear interpolation can be used to estimate the missing compo-

nents of a spectral vector based on the observed components within the same vector. In this case, the

S t k,( ) 1 k K≤ ≤, S t( ) K

K

s 1[ ] s 2[ ] … s M[ ], , , l1 l2,[ ]

s l[ ] l1 l l2≤ ≤,

s l1 1–[ ] s l2 1+[ ]

s l1[ ] s l2[ ] ŝ l[ ]

s l[ ] l1 l l2≤ ≤

ŝ l[ ] s l1 1–[ ]
s l2 1+[ ] s l1 1–[ ]–( ) l l1– 1+( )

l2 l1– 2+
-------------------------------------------------------------------------------+ l1 l l2≤ ≤( )=
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sequence considered in Equation (5.1) would be the components of the spectral vector, .

Here if frequency components  in the th vector, i.e, , are missing the esti-

mate for the missing values would be given by 

(5.2)

Since the estimates for the missing components are obtained by interpolation between other frequency

components within the same vector, we refer to this method as linear interpolation along frequency. 

Linear interpolation along time: Missing components of the spectrogram can also be estimated by linear

interpolation between the same frequency components in adjacent spectral vectors. In this case, the

sequence of points considered for interpolation would be a single slice of the spectrogram, parallel to the

time axis, i.e. . For brevity we refer to such a slice of the spectrogram as a time slice of

the spectrogram. Here if the th frequency component in vector numbers , i.e. ,

were missing, the estimate for these missing values would be given by 

(5.3)

Since the estimates are now obtained by interpolation between the same frequency components at other

time instants, we refer to this method as linear interpolation along time.

For both interpolation along frequency and interpolation along time, if the missing elements being esti-

mated lie at the boundaries of the spectrogram, they cannot estimated by interpolation. For example, if

 are missing and  or , these elements cannot be estimated by interpo-

lation along frequency since the spectral vector has observed components on only one side of the missing

elements. Similarly, if  are missing and  or , they cannot estimated by

interpolation along time since all the observed values of frequency component  are to one side of the

missing segment. In both these cases the missing elements have to be estimated by linear extrapolation of

the two closest observed elements instead of interpolation. For the case of estimation by linear extrapola-

tion along frequency, if the closest observed components of the vector are  and , the miss-

S t k,( ) 1 k K≤ ≤,
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Ŝ l k,( ) S l k1 1–,( )
S l k2 1+,( ) S l k1 1–,( )–

k1 k1– 2+
------------------------------------------------------------ k k1– 1+( )+=

S l k,( ) 1 l N≤ ≤,

k l1 l2,[ ] S l k,( ) l1 l l2≤ ≤,
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ing boundary elements would be given by

(5.4)

Similarly, where elements are being estimated by extrapolation along time, if the closest observed ele-

ments to the missing components in the time slice are  and  the missing boundary ele-

ments are obtained as

(5.5)

Alternately, missing boundary points could be filled in by simple replication of the last observed ele-

ment.

Figure 5.1 shows an example of estimation by interpolation along frequency. The figure plots the values

of the frequency components of a single spectral vector against the index of the frequency component. Ele-

ments that are missing in the middle of the vector have been estimated using interpolation while those

missing towards the edges have been estimated by extrapolation. Figure 5.2 similarly illustrates estimation

by interpolation along time. The trajectory of a single frequency component is traced (i.e. a time slice of

the spectrogram). Data points missing in the middle of the plot have been estimated by interpolation and

those missing towards the edges have been estimated by extrapolation.
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S l k4,( ) S l k3,( )–

k4 k3–
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------------------------------------------ l l3–( )+=

Figure 5.1 Plot of a single spectral vector. The dotted
regions are linear interpolation/extrapolation estimates
of missing values.

Figure 5.2 Plot of the trajectory of a single frequency
component with time. The dotted regions are linear
interpolation/extrapolation estimates of missing values

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

Mel filter index

Lo
g(

po
w

er
 s

pe
ct

ru
m

 v
al

ue
)

5 10 15 20 25
0

2

4

6

8

10

12

14

Lo
g(

po
w

er
 s

pe
ct

ru
m

 v
al

ue
)

Spectral vector index



Chapter 5. Spectrogram reconstruction methods for missing data 54

5.2.2 Nonlinear interpolation with polynomial functions

A polynomial of order  relating two variables  and  is a function of the form

(5.6)

A line is a polynomial of order one. There is a unique line through any two points. Extrapolating that

statement it can be shown that through any  points there is a unique polynomial of order . Given a

set of  points on a plane, , the unique th order polynomial that

passes through the  points can be determined using Lagrange’s formula [Press 1992]

(5.7)

While Lagrange’s formula gives us a direct polynomial formulaic relation between an arbitrary  and

the corresponding , a procedurally and computationally simpler method to obtain  for a given  is to

use Neville’s algorithm. Neville’s algorithm is a recursive procedure that begins by computing  zeroth

order polynomials (constants) and recursively computes the th-order polynomial as a linear interpolation

between two polynomials of order . The details of the algorithm can be found in [Press 1992].

Polynomial functions can be used to estimate missing values in a sequence. Consider any sequence of

numbers  where the values of the sequence in the interval  are unknown or missing,

i.e the values , are missing. We can denote any element  in the sequence as a point

on a plane. Let  be the set of  observed points in the

sequence immediately preceding the point  (i.e. ). Similarly, let the set of points

 be the set of  observed values immediately following the

point  (i.e. ). A polynomial of order  can be fitted to

these  points using Equation (5.7). The estimates for values of the points in the missing interval can

now be derived from the polynomial as
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(5.8)

This procedure is referred to as polynomial interpolation.  and  can be chosen according to the kind

of polynomial fit desired. Typically when polynomial interpolation with a polynomial of order  is

desired, the  points immediately preceding the missing points and the  points imme-

diately following them are used to determine the polynomial.

Missing regions in spectrograms can be estimated using polynomial interpolation. Once again, the

interpolation can be performed either across frequency or across time. As before, when estimates are

obtained by interpolating between the frequency components of the same vector we refer to the procedure

as polynomial interpolation along frequency. To interpolate across frequency the sequence of points con-

sidered in Equation (5.7) consists of the components of a single spectral vector, . Here,

if the frequency components  in the th vector, i.e. , are missing, we would locate

the  closest observed frequency components of the vector preceding the missing region and the 

closest frequency components following it and use these in Equation (5.7) to obtain an th order poly-

nomial, . The estimates of the missing components are obtained as 

(5.9)

If the missing points are estimated by interpolating between the same frequency components of adja-

cent spectral vectors we refer to the procedure as polynomial interpolation along time. In this case the

sequence of points considered in Equation (5.7) consists of a single time slice of the spectrogram, i.e.

. Here, if the th frequency component in vector numbers , i.e. ,

were missing, we would locate the  vectors immediately preceding the missing region whose th

components are present and similarly the  vectors immediately following the missing regions and use

these in Equation (5.7) to obtain an th order polynomial, . The estimates of the missing com-

ponents are obtained from this polynomial as 

(5.10)

In both interpolation along frequency and interpolation along time, some missing regions may not have
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 observed components preceding or following them, i.e. either  or  (or both) in Equation (5.9)

would be less than . Here a polynomial of lower order is fitted to the available points and the esti-

mates for the missing values are obtained from this lower order polynomial. Also, interpolation is not pos-

sible for missing elements on the boundaries of the spectrogram. These regions are estimated by linear

extrapolation as described in Section 5.2.1.

Figure 5.1 illustrates estimation by polynomial interpolation along frequency pictorially. The values of

the frequency components of a single spectral vector are plotted against the index of the frequency compo-

nent. Figure 5.2 similarly illustrates estimation by polynomial interpolation along time pictorially. The tra-

jectory of a single frequency component is traced (i.e. a time slice of the spectrogram). In both figures,

polynomial interpolation with a polynomials of order 3 has been performed. Where the number of points

available for interpolation was insufficient a polynomial of lower order has been used. Missing regions at

the boundaries have been estimated by linear extrapolation.

5.2.3 Nonlinear interpolation with rational functions

A rational function is defined as a quotient of polynomials. For example, the function
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Figure 5.3 Plot of a single spectral vector. The dotted
regions are polynomial-interpolation estimates of miss-
ing values. The order of the polynomial used is given
above the dotted lines. Missing boundary elements are
obtained by extrapolation.

Figure 5.4 Plot of the trajectory of a single frequency
component with time. The dotted regions are polyno-
mial-interpolation estimates of missing values. The
order of the polynomial used is shown. Missing bound-
ary elements are obtained by extrapolation
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(5.11)

is a rational function, with a “numerator polynomial” of order  and a “denominator polynomial’ of order

. We refer to such a function as a rational function of order . A rational function of order

 such as the one given in Equation (5.11) has  parameters and is therefore uniquely

described by  points. Given  points one can therefore construct the order 

rational function. 

An efficient algorithm to construct rational functions for the special cases when  or

 is the Bulirsch-Stoer algorithm [Press 1992]. The Bulirsch-Stoer algorithm is a recursive pro-

cedure that constructs increasing orders of rational functions from rational functions of lower order. The

constraint, however, is that the order of the denominator polynomial has to be the same as, or one more

than the order of the numerator polynomial, i.e. .

Rational-function interpolation is performed very similarly to polynomial interpolation. A rational

function of the desired order is fitted to the points immediately adjacent to the missing points in a

sequence, and the estimates of the missing points are derived from the rational function. Rational-function

interpolation can be used to estimate missing points in a spectrogram. Interpolation along frequency and

interpolation along time are both possible. In order to use an order  function for estimation we

would need  observed points to compute the function. Of these, ideally,  of

the observed points would precede the points to be estimated and  would follow them.

Once the rational function has been obtained from these points, the estimates for the missing points can be

obtained as the value of the rational function at the appropriate indices.

Once again, if  points are not available for the estimation the order of the rational function

would have to be reduced to accommodate the available points. Also, as in the case of linear and polyno-

mial interpolation, missing points near the boundaries of the spectrogram would have neighbors available

on only one side and would therefore have to be estimated by extrapolation instead of interpolation. 

There are several other interpolation techniques such as cubic spline interpolation etc. that can be used
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to estimate the values of missing points. However, they have not been attempted in this thesis since we

expect their performance to not be greatly different from those obtained with the interpolation methods

described in this section.

5.2.4 Experimental results with interpolation based estimation of missing points

The principal goal of reconstruction (i.e. estimation of missing elements of the spectrogram) is not so

much to effect an accurate, error-free reconstruction of the missing points as to reconstruct a complete

spectrogram that can be used for recognition without much degradation in recognition accuracy. These

goals are not unrelated to each other to the extent that error-free reconstruction of missing regions would

result in high recognition accuracy. However, the converse is not necessarily true - it is not necessary that

reconstructed spectrograms that result in high recognition accuracies would be very similar to the original,

uncorrupted, spectrogram. Thus, while the accuracy of the reconstruction methods is evaluated by the

error in the reconstruction, the effectiveness of the reconstruction methods in achieving the primary goal of

the reconstruction is measured by the recognition performance obtained with the reconstructed spectro-

grams.

Experiments were conducted to evaluate the effectiveness of the interpolation-based reconstruction

methods described above. The spectrogram reconstruction methods were evaluated on spectrograms with

elements randomly deleted following the paradigm explained in Section 4.4. The experimental setup used

was also identical to the one used to evaluate marginalization and class-conditional imputation in Section

4.4. A 20 mel-filter based mel-spectral representation was used to parametrize speech. The recognition

system was trained directly with the log-mel-spectral parameters. The fully-continuous HMM-based

SPHINX-III system was used for all experiments with the DARPA resource management database. Ran-

dom elements of the mel spectrogram were deleted and reconstructed using linear interpolation, polyno-

mial interpolation with polynomials of order 3, and rational-function interpolation with rational functions

of order (1,2). Both interpolation across frequency and interpolation across time were evaluated. The

orders for the polynomial and rational-function interpolation were chosen such that an even number of ele-

ments would be needed to determine the functions. This permits the number of observed elements used

from either side of the missing elements to be the same, thereby giving us a symmetric estimator. Where

the requisite number of points to determine the functions were not available lower order polynomials and
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rational functions were used. All missing points at boundaries were estimated by linear extrapolation. 

The mean squared error (MSE) between the estimated portions of the reconstructed spectrogram and

the corresponding regions of the original spectrogram is a measure of the accuracy of the reconstructed

spectrogram. Representing the elements of the true uncorrupted spectrogram from which the incomplete

spectrogram was derived as , the elements of the reconstructed spectrogram as , and the

number of missing elements in the spectrogram as , we define the MSE of reconstruction as

(5.12)

Clearly, the greater the MSE, the greater the divergence between the reconstructed and uncorrupted

spectrograms, and the lower the accuracy of the reconstruction.

The accuracy of the reconstructed spectrograms was measured in terms of the mean squared error

(MSE) between the reconstructed spectrogram and the original uncorrupted spectrogram. The recognition

accuracy obtained with the reconstructed spectrograms was measured to evaluate the effectiveness of the

reconstruction procedures. 

Figures 5.5 and 5.6 show the uncorrupted mel spectrogram of an utterance and the mel spectrogram

when 50% of the elements in the picture are missing, respectively. Figure 5.7 shows the mel spectrogram

when all the missing elements have been reconstructed using linear interpolation along frequency. Figure

5.8 shows a similar figure where all the missing elements have been reconstructed using linear interpola-

tion along time. Figures 5.9 and 5.10 show the reconstructions obtained using polynomial interpolation

along frequency using cubic polynomials (i.e. polynomials of order 3) and cubic polynomial interpolation

along time respectively. Similarly Figures 5.11 and 5.12 show the reconstruction obtained using rational

functions of order (1,2) for interpolation along frequency and time respectively.

We observe from Figures 5.5 through 5.12 that, in general, reconstructed spectrograms obtained by

interpolation along time match the original spectrogram more closely that reconstructions obtained by

interpolation along frequency. Furthermore, reconstruction by linear interpolation is seen to be better than
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polynomial or rational function interpolation in general and reconstruction obtained by linear interpolation

along time matches the original spectrogram most closely, overall. Figure 5.13 below plots the mean

square error between the reconstructed elements of the spectrograms and their actual values as a function

of the fraction of elements that were missing from the spectrograms. We refer to this fraction as the drop

fraction in the spectrogram. The MSE obtained using each of the reconstruction methods represented in

Figures 5.7 through 5.12 is shown. This figure confirms the visual observation from the earlier set of fig-

ures that the lowest mean squared error overall is obtained with reconstruction by linear interpolation

across time. We do note, however, that when the fraction of missing points is small, reconstruction using

cubic polynomial interpolation along time results in the best mean squared error. However, as the fraction

Figure 5.5 Mel spectrogram of an utterance. Figure 5.6 The same spectrogram when a randomly
selected 50% of its elements have been deleted.

Figure 5.7 Spectrogram obtained by estimating the
missing regions by linear interpolation across frequency

Figure 5.8 Spectrogram obtained by estimating the
missing regions by linear interpolation across time.
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of missing points increases and the mean distance from any missing point to the closest observed point

increases, the reconstruction error with cubic polynomial interpolation increases faster than that of linear

interpolation

Figure 5.14 plots the recognition accuracies obtained using the reconstructed mel spectrograms

obtained using all the methods represented in Figure 5.13 against the fraction of elements missing in the

Figure 5.9 Spectrogram obtained by reconstructing
missing regions by polynomial interpolation along fre-
quency. Polynomials of order 3 were used when at least
two observed elements were present on either side of the
missing elements. When the number of available
observed neighbors was lesser, lower order polynomials
were used.

Figure 5.10 Spectrogram obtained by reconstruction
missing regions by polynomial interpolation along time.
Polynomials of order 3 were used where at least two
observed elements were present on either side of the
missing elements. Otherwise lower order polynomials
were used.

Figure 5.11 Spectrogram obtained by estimating miss-
ing regions by rational function interpolation along fre-
quency. Rational functions of order (1,2) were used
where at least two observed elements were present on
either side of the missing elements. Otherwise rational
functions of a lower order were used.

Figure 5.12 Spectrogram obtained by estimating miss-
ing regions by rational function interpolation along
time. Rational functions of order (1,2) were used where
possible. Otherwise, lower order rational functions were
used.
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picture. We observe that the trends are similar to those observed in Figure 5.13. Non-linear interpolation

techniques result in poorer recognition accuracies than linear interpolation in general. Also, interpolation

along frequency generally results in lower accuracies than interpolation along time. The best performance

overall is achieved with linear interpolation along time.
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Figure 5.13 Mean Squared Error (MSE) of reconstruction for linear and non-linear interpolation, along frequency
and time vs. fraction of elements missing in the incomplete spectrogram

Left Panel: MSE obtained with interpolation
along frequency. Linear interpolation, polynomial
interpolation with polynomials of order 3, and
rational-function interpolation with rational func-
tions of order (1,2) are represented

Right Panel: MSE obtained with interpolation
along time. Linear interpolation, polynomial inter-
polation with polynomials of order 3, and rational
function interpolation with rational functions of
order (1,2) are represented
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Figure 5.14 Recognition accuracy vs. drop fraction for spectrograms reconstructed by linear and non-linear interpo-
lation along frequency and time.

Left Panel: Recognition accuracy obtained with
reconstructed spectrograms where missing ele-
ments were estimated by interpolation along fre-
quency. Linear interpolation, polynomial
interpolation with polynomials of order 3, and
rational-function interpolation with rational func-
tions of order (1,2) are represented

Right Panel: Recognition accuracy obtained with
reconstructed spectrograms where missing ele-
ments were estimated by interpolation along time.
Linear interpolation, polynomial interpolation with
polynomials of order 3, and rational-function inter-
polation with rational functions of order (1,2) are
represented
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5.2.5 Geometrical reconstruction methods: summary and conclusion

The recognition accuracies in Figure 5.14 show that even simple geometrical reconstruction methods

such as linear interpolation based estimation of missing points can be quite effective in reconstructing

spectrograms when random elements of the spectrogram are missing. Spectrograms reconstructed by linear

interpolation along time show minimal loss in recognition accuracy when fully half the picture is missing.

The best reconstruction, both in terms of MSE and recognition accuracy, is obtained by simple linear inter-

polation, and increasing the complexity or order of the functions used to estimate the missing regions

results in no improvement in the reconstruction. One likely conclusion drawn from this is that the values of

the elements in the spectrogram do not follow any specific pattern that can be captured by any single func-

tional form. As a result the estimates obtained with more detailed models such as polynomials and rational

functions are more likely to be erroneous than estimates obtained with simple first order functions.

Another noteworthy fact is that interpolation along time is generally more effective than interpolation

along frequency. One of the reasons for this is that spectral vectors in the mel spectrograms used in these

experiments have only 20 components. Consequently, observed elements frequently cannot be found on

one side of missing elements, especially at high drop fractions, and these elements have to be reconstructed

by extrapolation, rather than by interpolation. Extrapolation is known to result in poorer estimates than

interpolation. Interpolation along time, on the other hand, does not face this problem since time slices of

spectrograms have as many elements as the number of spectral vectors in the spectrogram. Another possi-

ble reason for the greater effectiveness of interpolation along time could be that spectrograms exhibit

greater continuity along time, than along frequency. 

All the methods mentioned in this section, are local reconstruction methods in that they reconstruct

missing elements solely on the basis of the elements remaining in the picture. All the information used to

reconstruct the missing points is obtained from the spectrogram itself, with no reference to any external

sources of information. Such reconstruction methods have several drawbacks. First, when the fraction of

missing elements is very high there might not be sufficient information remaining in the picture to recon-

struct the missing elements properly. Second, if the observed elements in the spectrogram were to be dis-

torted due to any reason such as due to noise, all missing elements reconstructed on the basis of these

points alone would also be distorted similarly.
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These shortcomings could be avoided if the reconstruction process were directed by other external

information about the structure of speech spectrograms. This has the advantages of permitting better recon-

struction when there is insufficient information in the damaged spectrogram as well as ensuring that the

reconstructed spectrogram conforms to the notion of a clean spectrogram as represented by these external

sources of knowledge. Some easily accessible sources of information are the large corpora of speech data

that are readily available to train a speech recognition system. The distribution of the elements of spectro-

grams and the statistical relations between them can be learned from these corpora and used in the recon-

struction.

In the following section we discuss reconstruction methods that utilize vector statistics, i.e. the distribu-

tion of the spectral vectors of clean speech. 

5.3 Cluster-based reconstruction: statistical reconstruction using distributions 

of uncorrupted spectral vectors

In the methods described in this section we use the vector statistics of the spectral vectors for recon-

struction of the complete spectrogram. These methods treat each spectral vector independently of every

other vector in the spectrogram, i.e. they model the sequence of spectral vectors in the spectrogram as the

output of an independent identically distributed (IID) random process. The statistical relations between

components of different vectors are not modeled. The distribution of spectral vectors obtained under the

IID assumption is used to condition the estimates of missing components. 

The distribution of the spectral vectors of clean, uncorrupted speech is not known beforehand and has to

be learned from a training corpus of uncorrupted speech. Since the precise form of the distribution of the

spectral vectors is not known, a parametric form for the distribution must be assumed. The simplest and

possibly the most commonly used representation for the distribution of speech vectors is the cluster-based

representation. In a cluster-based representation spectral vectors are assumed to be segregated into a set of

clusters. All vectors belonging to any cluster are further assumed to have a parametric distribution, which

we refer to as the cluster distribution. Cluster-based representations therefore have two types of parame-

ters:

1) The a priori probability that a random vector belongs to any of the clusters 

2) The parameters of the cluster distributions 
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Let  represent an arbitrary spectral vector. Let  represent the a priori probability that a vector

belongs to the th cluster, and let  represent the parametric distribution of vectors belonging to

the th cluster. In a cluster-based representation the distribution of  is therefore modeled as

(5.13)

where  is the total number of clusters and  represents the set of parameters of . 

If we assume that within any cluster vectors are distributed according to a Gaussian distribution, then

the overall distribution of the data set can be represented as a mixture of multivariate Gaussians

(5.14)

where  is the dimensionality of the vectors.  and  are the mean vector and covariance matrix,

respectively, of the Gaussian distribution of the vectors belonging to the th cluster. The parameters of the

distribution represented by Equation (5.14), namely the values of , , and  for all the clusters must

learned from the training corpus. In order to learn these parameters the vectors of the training corpus can

be clustered into the desired number of clusters using techniques such as k-means clustering [McQueen

1967], the LBG algorithm [Linde 1980] etc., and the distributions of the individual clusters can be obtained

once the clusters are obtained. More consistent parameter estimates are obtained using maximum likeli-

hood (ML) methods [Mclachlan 1988]. 

While the distribution represented by Equation (5.13) is more generic and therefore better able to model

a wider class of distributions, the Gaussian mixture distribution given by Equation (5.14) has several

advantages:

• Most distributions of infinite extent (i.e. distributions which are non-zero everywhere except at infin-

ity) can be modeled by mixtures of Gaussians with arbitrary precision [Mclachlan 1988].

• Gaussian densities are completely defined by their first and second order moments. As a result, we

only need to know the first and second order moments of the individual Gaussians comprising the
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mixture to completely describe the density. The estimation errors inherent in the estimation of higher

order moments needed by other density functions are thereby avoided.

• The parameters of a mixture Gaussian distribution can be easily estimated using the EM algorithm

[Dempster 1977]. It is also very easy to derive EM type solutions for most other ML estimation prob-

lems where the random variables involved have mixture Gaussian distributions.

• Most methods of estimating missing elements in a spectrogram that are discussed in this thesis involve

maximum a posteriori (MAP) estimation of the missing elements. MAP estimation is very simple

when the underlying distribution of the data is Gaussian.

In light of these advantages, we model the distribution of spectral vectors as a mixture Gaussian for the

missing feature methods described in this section.

The cluster-based representation leads to a very simple solution for the estimation of missing elements

of the spectrogram. Given any spectral vector  with missing components  we only have to

identify the cluster that the vector  belongs to and use the distribution of the vectors belonging to that

cluster to obtain an estimate for . We refer to the cluster that any vector belongs to as the cluster

membership of that vector. This cluster membership localizes the region that the vector  can lie in,

and thereby the range of values that the missing components of the vector can take. Thereafter, the distri-

bution of the cluster can be used to obtain a statistical best guess for the missing components of vector

within the localized region.

As discussed in Chapter 2, several statistical methods exist to estimate the missing components of a

data set given the distribution of the complete data. While all of these methods can be used to estimate the

missing components of a vector, MAP estimation is arguably the best motivated procedure among them.

MAP estimation also provides a tractable framework for incorporating additional constraints where avail-

able, in the estimation. 

We therefore use MAP estimation to estimate the missing components of vectors. Once the cluster

membership of a vector is identified the missing components of the vector are obtained as MAP estimates

based on the distribution of the identified cluster, conditioned on the observed components of the vector.

Figure 5.15 shows a schematic representation of cluster-based estimation of missing elements of a spec-
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tral vector.

In order to obtain a complete cluster-based reconstruction method for incomplete spectrograms the fol-

lowing issues also have to be resolved:

• The number of clusters to use in the cluster-based representation in order to obtain optimal reconstruc-

tion is not known. 

• The manner in which the cluster membership of any vector is determined is not known. The fact that

some components of the vector may be missing makes cluster membership identification a difficult

problem.

Depending on the particular solution for each of the above problems the reconstructed spectrogram and

the recognition accuracy obtained using the reconstructed spectrogram can vary. In the following sections

we address these issues and describe three cluster-based reconstruction methods: 

• single-cluster-based reconstruction, 

• multiple-cluster-based reconstruction with marginalization-based cluster identification, 

• multiple-cluster-based reconstruction with time-interpolation-based cluster identification, and 

These methods vary only in the number of clusters used to represent the distribution and the manner in

which clusters are identified.
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Figure 5.15 Schematic representation of cluster-based reconstruction. The big ellipse represents the outline of the
distribution of a set of two dimensional vectors. The data has been segregated into a number of small clusters. The
smaller ellipses represent the cross section of the Gaussian distributions of these individual clusters. The solid line
represents a complete vector. In the observed data, the Y component of this vector is missing, and only the X compo-
nent, represented by the dotted line along the X axis, is observed. The cluster-based reconstruction method identifies
the thick ellipse as the cluster that the complete vector belongs to, and uses the distribution of that cluster to obtain an
MAP estimate for the missing Y component, and thereby the complete vector. The estimate complete vector is repre-
sented by the dashed line.
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5.3.1 Single cluster based reconstruction: modeling the distribution with a single 

cluster

The simplest cluster-based representation of the distribution of a data set is where all data are assumed

to belong to a single cluster. The distribution of the cluster is simply the global distribution of the data. In

single cluster-based estimation therefore, all spectral vectors are assumed to belong to a single cluster. We

assume the distribution of the cluster to be a Gaussian. The mean vector and covariance matrix of the

Gaussian can be directly obtained from a training corpus of clean speech spectrograms.

Since there is only one cluster that any vector can belong to no further cluster membership identifica-

tion is necessary during the estimation. The MAP estimate of the missing components of any vector is

based on the cluster distribution of this single cluster, i.e. the global distribution of the data, and condi-

tioned on the observed elements in that vector. We denote the missing components of the th spectral vec-

tor , by the vector  and its observed components by the vector  such that

, where  is the permutation matrix that rearranges the components of 

and  to obtain . Note that  is specific to the th vector since the precise set of components

that are missing from any spectral vector can vary from vector to vector. The estimated value of the vector

of missing components,  and the corresponding estimate of the complete vector  are now

obtained in the manner described in Section 2.5.4 as

(5.15)

where  and  are the mean and covariance of the observed components (i.e. the mean vector and the

covariance matrix of the marginal distribution of ),  is the mean of the missing components (i.e.

the mean vector of the marginal distribution of ), and  is the cross covariance between the

observed components and the missing components, i.e. , where

 refers to the expectation operator [Papoulis 1991]. , ,  and  are all easily obtained
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from the parameters of the cluster distribution as explained in Section 2.5.4. Figure 5.16 represents the pro-

cedure of reconstructing the damaged components of a vector as a block diagram.

The complete spectrogram  is reconstructed by reconstructing each incomplete spectral vector in the

spectrogram using Equation (5.15) as

(5.16)

Recognition is now performed using the estimated complete spectrogram.

For brevity we refer to single-cluster-based reconstruction as single cluster reconstruction in future ref-

erences to the method.

5.3.1.1 Experimental results with a single cluster based reconstruction

Single cluster reconstruction was evaluated with the random-drop paradigm. Experiments were run

using the RM database and the same setup used to evaluate geometrical reconstruction methods in Section

5.2.4.

Figure 5.17 shows the same incomplete spectrogram shown in Figure 5.6. Figure 5.18 shows the recon-

structed spectrogram obtained when the missing regions of this spectrogram have been reconstructed using

single-cluster-based estimation.

Figure 5.19 shows the mean squared error of spectrograms reconstructed with single cluster reconstruc-

tion, as a function of the fraction of elements missing in the spectrogram (i.e. the drop fraction). As seen

from this figure, the MSE of the reconstructed spectrogram increases as the drop fraction increases, i.e. the

accuracy of the reconstruction decreases as the drop fraction increases.

Figure 5.20 shows the recognition accuracy obtained using spectrograms that have been reconstructed
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on So

Damaged

Vector

Reconstructed

Vector

Figure 5.16 Block diagram explaining the procedure for estimating the missing components of a vector. The com-
plete spectrogram is obtained by reconstructing the missing elements of each vector in the spectrogram using this pro-
cedure.
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Figure 5.17 Spectrogram of an utterance of speech,
where 50% of the elements have been randomly deleted

Figure 5.18 The same spectrogram where the missing
elements have been reconstructed by single cluster
reconstruction.
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Figure 5.19 Mean squared error between the estimated regions of the reconstructed spectrogram obtained using sin-
gle cluster reconstruction and the corresponding regions of the original uncorrupted spectrogram, as a function of the 
drop fraction. The MSE obtained with linear interpolation along frequency is also shown for comparison.
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Figure 5.20 Word recognition accuracy obtained with reconstructed spectrogram as a function of the drop fraction.
The recognition accuracy obtained with linear interpolation along frequency is also shown for comparison.
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using single cluster reconstruction, as a function of the drop fraction.

The recognition accuracy is seen to decrease as the drop fraction increases. This correlates well with the

fact that the mean squared error of the reconstructed spectrograms increases with increasing drop fraction.

5.3.1.2 Discussion and analysis of experimental results

We note from the earlier Section that the MSE of reconstruction, and consequently the recognition accu-

racy, degrade as the drop fraction increases. This happens due to several reasons. 

It can be shown the expected MSE of reconstruction for , the missing components of the th vec-

tor  is given by [Appendix A]

(5.17)

where  is the covariance matrix of ,  the covariance matrix  and  is the cross

covariance between  and . It can also be shown that the MSE of reconstruction increases as

the number of missing elements in , i.e. the number of elements in , increases [Appendix A].

As the drop fraction increases, the average number of elements in  does increase. As a result, the

MSE of reconstruction increases with increasing drop rate.

Another factor that affects the estimation of the missing regions is the actual covariance between the

missing components and the observed components of the vector. As the drop fraction increases, the average

distance between a frequency component and the nearest observed frequency component increases

[Appendix A]. Figure 5.21 plots the mean distance between any missing frequency component and the

closest observed frequency component as a function of the drop fraction. Figure 5.22 shows how the aver-

age relative covariance between two frequency components varies as the distance between the components

increases. We observe from these figures that as the drop fraction increases, the cross-covariance between

the missing component and the observed components decreases. It is easy to see in Equation (5.17) that as

the individual elements in the cross-covariance matrix  decrease,  decreases

[Appendix A] and the MSE of reconstruction increases. Thus, another reason for the increase in MSE with

increasing drop fraction is the corresponding decrease in the covariances between the missing components
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and the observed components of the spectral vector.

The recognition accuracy obtained with the reconstructed spectrogram is clearly related to the accuracy

of the reconstruction. The error in reconstruction can be viewed as noise added to the corrected spectral

values. The greater the error, the greater the noise. At higher drop fractions the higher MSE of reconstruc-

tion corresponds to noisier spectrograms resulting in poorer recognition accuracy.

In general we note that even this very simple clustering method using only a single cluster results in

reasonably good reconstructions of the spectrogram when the fraction of missing elements is less than

50%. The difference in recognition performance between the reconstructed spectrograms and the original

spectrograms is not appreciable at these drop fractions (i.e. fractions of missing data). Comparison of

reconstructed spectrograms obtained by linear interpolation across frequency (Figure 5.7), and by single

cluster reconstruction (Figure 5.18), show both reconstructed spectrograms to be similar in nature. This is

because both reconstruction by interpolation across frequency and singe cluster reconstruction are based

on the assumption that the energy in adjacent frequency bands varies continuously and smoothly. However,

cluster reconstruction uses additional statistical information about the statistical correlations between fre-

quency bands. Comparison of the MSE of reconstruction and the recognition accuracy obtained using

reconstructed spectrograms for the two reconstruction methods (Figures 5.13, 5.14, 5.19, and 5.20) shows

us that the additional statistical information used in the cluster-based reconstruction methods does indeed

result in better reconstruction.
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nent and its closest observed neighbor as a function of
drop rate.

Figure 5.22 Relative covariance between two frequency
components as a function of the distance between them.
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5.3.2 Multiple cluster based reconstruction

So far we have discussed a spectrogram reconstruction method in which we modeled the distribution of

spectral vectors with a single cluster. A more detailed representation would use multiple clusters to model

the distribution of spectral vectors. The means and variances of the distributions of the individual clusters,

and the proportion of vectors belonging to each of the clusters, i.e. the a priori probability of the individual

clusters, can be learned from a training corpus of clean spectrograms using the EM algorithm [Dempster

1977].

When the distribution is represented by multiple clusters the procedure for estimating the missing por-

tions of an incomplete vector has two steps. In the first step the cluster membership of the vector, i.e. the

cluster that the vector belongs to, is identified. Once the cluster membership of the vector is established the

distribution of that cluster is used to obtain MAP estimates for the missing components of that vector. Fig-

ure 5.23 represents the entire procedure for estimating the missing regions of an incomplete vector as a

block diagram.

A vector is said to belong to the cluster that is most likely to have generated it. Since all cluster distribu-

tions are assumed to be Gaussian, the cluster membership  of the vector  is defined as

(5.18)

where  and  are the mean vector and the covariance matrix respectively of the th cluster, and  is

the a priori probability that any vector belongs to the th cluster. This treats the identification of cluster
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Figure 5.23 Block diagram showing estimation of missing elements in a spectral vector using a multiple-cluste r
based representation of the distribution of spectral vectors.
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membership as a classification problem, where the clusters are the classes. Equation (5.19) defines the

optimal bayesian classifier which determines which cluster a vector belongs to. The definition of cluster

membership also has a geometrical interpretation. It can be restated in terms of distance if we define dis-

tance as the negative of the log-likelihood of the vector:

 (5.19)

Using this definition of distance, the cluster membership is defined as the cluster that the vector is clos-

est to. Equations (5.18) and (5.19) implicitly define the boundaries between the various clusters. Thus, any

vector that falls within the boundaries of a particular cluster is said to belong to that cluster. 

Once the cluster membership of the vector is identified, the distribution of that cluster is used to obtain

MAP estimates for the missing components of that vector. As before, separating the missing and observed

components of  into  and  such that , the estimated value of

 and the corresponding complete vector  are now obtained as

(5.20)

where  is the cluster membership of  and  and  are the mean and covariance of the

observed components,  is the mean of the missing components given that  belongs to the th

cluster.  is the cross covariance between  and , given that  belongs to the th clus-

ter. i.e., 

(5.21)

The means and covariances, , ,  and  are all obtained from the parameters of

the cluster distribution of the th cluster. The estimated complete spectrogram  is obtained by recon-

structing the missing components of each spectral vector in the spectrogram using Equation (5.20) as

(5.22)
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Recognition is now performed using the estimated complete spectrogram.

An important parameter in a multiple-cluster-based representation of the distribution of a data set is the

number of clusters used in the representation. We refer to this number as the codebook size of the represen-

tation. As the codebook size increases the representation becomes more detailed and the size of the indi-

vidual clusters decreases. Thus, as the codebook size increases the cluster membership of a vector

increasingly localizes its position. Therefore the error in the estimates of the missing components can be

expected to decrease with increasing codebook size if the cluster membership of every vector is always

correctly known. 

When complete spectral vectors are available, cluster membership of vectors can be directly obtained

by evaluating Equation (5.19). However, when dealing with incomplete spectrograms, several components

of the spectral vector could be missing. Direct computation of Equation (5.19) is not possible with incom-

plete vectors. From a geometrical perspective, it is not possible to determine whether a vector lies within

the boundaries of the cluster when some of the components of the vector are not known. In this situation

cluster membership has to be estimated using one of the following solutions:

• Identify cluster membership based only on the observed components

• Pre-estimate the missing components in some manner, and then use the complete vector to identify

cluster membership

Since the cluster membership found by these methods is only an estimate of the true cluster member-

ship it is likely to be erroneous. Error in cluster-membership identification results in the distribution of the

wrong cluster being used for estimating the missing components of the spectral vector resulting in

increased MSE in the reconstruction. Furthermore, the error in estimating cluster membership with incom-

plete vectors can be expected to increase as the codebook size increases and the clusters become more

localized. This resulting increase in MSE due to the increased error in cluster membership identification is

likely to compensate for some or all of the improvement in the reconstruction accuracy that would be

expected with increasing codebook size had cluster membership been perfectly known.

In the following section we investigate the ideal situation where the correct cluster membership of all

vectors in the spectrogram is known a priori for the estimation of missing elements, and we also evaluate

the effect of codebook size in this ideal situation. In subsequent sections we address the problem of esti-

mating cluster membership of incomplete vectors. We present two multiple-cluster-based reconstruction
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methods where we estimate cluster membership of vectors with incomplete vectors and reconstruct vectors

based on the estimated cluster membership.

5.3.3 Oracle experiments with perfect knowledge of cluster membership

In an ideal situation the cluster membership of every vector in the incomplete spectrogram would be

known a-priori. The reconstruction obtained under this ideal condition can be considered to be an upper

bound to the performance of cluster-based reconstruction methods. We attempt to estimate this upper

bound experimentally with an “oracle” experiment where the correct cluster membership of the vectors is

given beforehand.

For the oracle experiment random elements of the spectrogram were dropped using the random-drop

paradigm and reconstructed as described in Section 5.3.2. The cluster membership of each of the vectors

was determined using the corresponding vector from the original, complete, spectrogram. MAP estimates

of the missing components of vectors were estimated using the distribution of the correct cluster.

We refer to this procedure where incomplete spectral vectors are reconstructed using oracle knowledge

of cluster membership as cluster oracle reconstruction.

Figure 5.24 shows the mean squared error of spectrograms reconstructed by cluster oracle reconstruc-

tion with cluster-based representations of different codebook sizes, as a function of the drop fraction

obtained. Each line in the figure plots the MSE of reconstruction obtained using a cluster-based representa-

tion of a particular size. The MSE of reconstruction when the codebook size is one is identical to that

obtained with single cluster reconstruction (Figure 5.19) since with only a single cluster there is no identi-

fication of cluster membership necessary. As the codebook size increases the MSE of reconstruction at any

drop fraction is observed to decrease monotonically as predicted in Section 5.3.2. Also, for any codebook

size the MSE increases with increasing drop fraction as was observed in single cluster reconstruction.

Figures 5.25 shows an example spectrogram with 70% of its elements missing and the reconstructed

spectrogram obtained with oracle knowledge of cluster membership with cluster-based representations of

increasing codebook sizes. We see from the pictures that the reconstruction follows the same pattern as the

MSE - the reconstructed spectrogram resembles the original increasingly with increasing codebook size.
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As explained in Section 5.3.1.2, spectrograms with larger MSE of reconstruction can be expected to

result in lower recognition accuracy than spectrograms with lower MSE. Therefore, the recognition accu-

racy obtained with the reconstructed spectrograms can be expected to reflect the trends of the MSE of

reconstruction. It can be expected that the recognition accuracy obtained with cluster oracle reconstructed

spectrograms will increase with increasing codebook size at any drop fraction, and that it will decrease

with increasing drop fraction for any codebook size. Figure 5.26 shows the recognition accuracy obtained

with cluster oracle reconstructed spectrograms as a function of drop fraction, for cluster-based representa-

tions of various codebook sizes. The trends seen in this figure are exactly as expected. The recognition

accuracy obtained with a codebook size of one is identical to that obtained with single cluster reconstruc-

tion (Figure 5.20). As the codebook size increases the recognition accuracy at any drop fraction improves

monotonically. For codebook size 512 the reconstructed spectrogram obtained when 90% of the original

spectrogram is missing results in almost the same recognition accuracy as the uncorrupted spectrogram

(0% drop fraction). Also, for all codebook sizes recognition accuracy degrades with increasing drop frac-

tion.

Figures 5.24 through 5.26 above indicate that good reconstruction and very high recognition accuracies

are possible, in principle, using cluster-based reconstruction. However, the actual performances seen in

these figures are only upper bounds and, indeed, may be unachieveable. In a real situation the cluster mem-

bership of any vector would not be known a priori and would have to estimated. As the codebook size

increases, the error in cluster membership identification can also be expected to increase. These would
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Figure 5.24 Mean squared error of the reconstructed spectrogram as a function of drop rate for various codebook
sizes. Each line in the figure plots the MSE of reconstruction for a particular codebook size. 
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Figure 5.25 Examples of reconstructed spectrogram with oracle knowledge of cluster membership

Panel 1: Original spectrogram Panel 2: Spectrogram with 70% of its elements
randomly deleted

Panel 3: Spectrogram reconstructed with cluster
based representation of codebook size 1

Panel 4: Spectrogram reconstructed with code-
book size 8

Panel 5: Spectrogram reconstructed with code-
book size 64

Panel 6: Spectrogram reconstructed with code-
book size 512
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increase the MSE in reconstruction and reduce the recognition accuracy.

5.3.4 Cluster Marginal Reconstruction: Identifying cluster membership based on

observed components alone

Consider an incomplete spectral vector  with missing components  and observed compo-

nents . Equation (5.18) can now be restated for  as

(5.23)

Since the value of  is unknown this cannot be evaluated and the correct cluster membership of

 cannot be obtained directly. One solution to this problem is to attempt to identify the cluster member-

ship of the vector based on the observed components of the vector alone. 

(5.24)

The cluster distributions are defined on the entire spectral vector . Therefore, to obtain the distri-

bution of the observed parameters we would have to integrate the missing components out of the distribu-

tions, i.e. by marginalization.

(5.25)
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Figure 5.26 Recognition accuracy obtained with spectrograms reconstructed with oracle knowledge of cluster mem-
bership, as a function of drop fraction. Recognition accuracies are plotted for the reconstructed spectrograms
obtained for several codebook sizes
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Cluster membership therefore would be estimated as

(5.26)

This method of estimating cluster membership with incomplete data is very similar in principle to mar-

ginalization based classification with incomplete data (Section 4.3). As in the case of cluster-membership

identification with complete vectors, Equation (5.24) can be expressed in terms of distance, which is

defined as the negative of the log likelihood of the observed components of the vector

(5.27)

where  and  are the mean and covariance of the observed components, given that the vector

belongs to the th cluster.

The cluster membership estimated by Equation (5.27) is likely to be erroneous since the contribution of

the missing components to the likelihoods of clusters is not being considered. As the fraction of elements

missing from the vector increases Equation (5.27) is computed on fewer and fewer components and the

estimated cluster membership becomes increasingly erroneous. In the limit where the entire vector is miss-

ing it is not possible to identify the cluster at all. In this situation we arbitrarily select, for the totally corrupt

vector, the estimated cluster identity of the closest vector that is not completely corrupted.

Once the cluster membership of a vector is estimated, the distribution of the estimated cluster is used to

estimate the missing components in the vector, and thereby the complete vector, using Equation (5.20).

We refer to this procedure of cluster membership estimation by marginalization and reconstruction of

vectors with clusters so identified as cluster marginal reconstruction. The nomenclature is indicative of the

fact that cluster-based reconstruction is being used, and that cluster membership has been identified by

marginalization.

5.3.4.1 Experimental evaluation

Cluster marginal reconstruction was evaluated using the random-drop paradigm and the same experi-

mental setup used in Section 5.3.3. In multiple-cluster-based reconstruction an additional factor affecting
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reconstruction are the errors in cluster membership identification. Figure 5.27 plots the percentage of clus-

ters that are wrongly identified as a function of the fraction of the elements missing in the incomplete spec-

trogram, for various codebook sizes. The percentage of wrongly identified clusters varies approximately

linearly with the fraction of missing elements. We also observe that the fraction of wrongly identified clus-

ters also increases as the codebook size increases, as expected. We noted in Section 5.3.3 that when cluster

membership of vectors is perfectly known the MSE of estimation decreases monotonically with increasing

codebook size. However, when cluster member is not known the increased error in cluster-membership

identification with increasing codebook size introduces errors in the estimation that are likely to compen-

sate for some, or all of the improvement obtained due to increased codebook size. Figure 5.28 shows the

MSE in reconstruction as a function of the fraction of missing elements for various codebooks sizes. Note

that the MSE obtained with codebook size 1 is the same as that obtained with cluster oracle reconstruction

since there is no identification of cluster membership needed. Increasing the codebook size not improve

the MSE significantly with increasing codebook size confirming our hypothesis that the increased error in

cluster identification compensates for the improved reconstruction with increasing codebook size.

Figure 5.29 shows the reconstructed spectrogram obtained with different codebook sizes when the

incomplete spectrogram has 70% of its elements missing. We observe that there is no appreciable visual

difference between the reconstructed spectrograms that could be attributed to codebook size.

It is logical to conclude that since increasing codebook size does not improve the MSE of reconstruc-

tion it will not improve the recognition accuracy either. This hypothesis in confirmed by Figure 5.30,

which shows the recognition performance obtained with the reconstructed spectrograms for various code-
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Figure 5.27 Percentage of clusters wrongly identified as a function of drop fraction for cluster-based representations 
of various codebook sizes.
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books sizes. Increasing codebook size does not improve recognition accuracy significantly. In fact, the per-

formance with codebook size 512 is worse than that obtained with codebook size 1

The lack of improvement in reconstruction accuracy and recognition performance with increasing

codebook size is attributable entirely to errors in cluster membership identification. It stands to reason that

substantially better reconstruction could be achieved at higher drop rates if the cluster identification accu-

racy could be improved. 

5.3.5 Cluster membership estimation with preliminary estimates

We can avoid the problem of having to ignore the missing components entirely in cluster identification

by using a preliminary estimate for the missing components in the vector, for cluster membership identifi-

cation. If we represent the preliminary estimate for the vector of missing elements  as , then

Fraction Dropped (%)
20 40 60 80 100

M
S

E
 o

f r
ec

on
st

ru
ct

io
n

1.0

2.0

3.0

4.0

0.0
0

Codebook size 512
Codebook size 64
Codebook size 8
Codebook size 1

Figure 5.28 MSE of reconstruction as function of drop rate, for cluster-based representations of various codebook
sizes. 
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Figure 5.30 Recognition accuracy vs. drop fraction using spectrograms reconstructed by cluster marginal reconstruc-
tion, for various codebook sizes.
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Figure 5.29 Reconstructed spectrogram obtained by marginalization based estimation, for several codebook sizes

Panel 1: Original spectrogram Panel 2: Spectrogram with 70% of its elements
randomly deleted

Panel 3: Spectrogram reconstructed with cluster
based representation of codebook size 1

Panel 4: Spectrogram reconstructed with code-
book size 8

Panel 5: Spectrogram reconstructed with code-
book size 64

Panel 6: Spectrogram reconstructed with code-
book size 512
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we would obtain the preliminary estimate for the complete vector as

(5.28)

The cluster membership of the vector can then be estimated using the preliminary estimate as

(5.29)

It is important to distinguish between the preliminary estimate of the complete vector  and the

final estimate of the complete vector  that is used to reconstruct the complete spectrogram in Equation

(5.20). The density of the cluster identified in Equation (5.29) is used to obtain the final estimate of the

missing elements of the vector . The complete vector  is obtained as in Equation (5.20).

The preliminary estimate for the missing components,  can be obtained by any of the geometrical

reconstruction method described in Section 5.2. Of these, it was seen that simple linear interpolation was

superior to non-linear interpolation methods. Therefore, linear interpolation based estimation methods are

good candidate methods for obtaining the preliminary estimate of missing elements.

5.3.5.1 Preliminary estimate by frequency interpolation

The preliminary estimate  of the missing components in the vector can be obtained by linear

interpolation across frequency, as described in Section 5.2.1. This preliminary estimate can then be used

for estimating cluster membership.
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Figure 5.32 The left frame shows recognition accuracy obtained spectrograms reconstructed by frequency interpola-
tion based estimation of cluster membership, for codebook sizes 1, 8 64 and 512. The right panel shows the same for
cluster marginal reconstruction.
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Figure 5.31 shows the MSE of reconstruction for frequency interpolation based estimation of cluster

membership, as a function of the drop fraction, for several codebook sizes, and compares it with the MSE

for cluster marginal reconstruction (Section 5.3.4). The random-drop paradigm and the DARPA RM data-

base were used, as in the other experiments reported in this chapter. Figure 5.32 compares the recognition

accuracy obtained with reconstructed spectrogram for the two cases. As can be seen, there is no apprecia-

ble improvement to be obtained by interpolating across frequency. In fact, there seems to be a slight degra-

dation of performance at higher codebook sizes. This is only to be expected since interpolation across

frequency depends on the continuity across frequency bands to obtain estimates of missing components.

Cluster-based representations already model the correlations between frequency bands explicitly. Since no

information other than this is used in the preliminary estimate, improvement in reconstruction due to using

the preliminary estimate can only be expected to be marginal, if any.

Since no improvement is to be gained by this procedure we make no further reference to it in this thesis.

5.3.5.2 Preliminary estimate by time interpolation

The preliminary estimate of the missing components,  used in the estimation of cluster member-

ship can be obtained by linear interpolation across time, as described in Section 5.2.1. Linear interpolation

along time takes advantage of the temporal continuity of frequency components to estimate missing com-

ponents of the spectrogram. A cluster-based representation models the distribution of each vector indepen-

dently of any other vector and does not model temporal continuity in any manner. Therefore, the temporal
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Figure 5.31 The left frame shows MSE of reconstruction for frequency interpolation based estimation of cluster
membership, for codebook sizes 1, 8, 64 and 512. The right panel shows the same for cluster marginal reconstruction.
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constraints imposed by linear interpolation across time represent an additional source of information and

are expected to improve cluster membership identification and reconstruction accuracy.

We refer to this reconstruction procedure where cluster membership is identified based on preliminary

estimates given by linear interpolation along time as cluster time-interpolated reconstruction.

Figure 5.33 shows the percentage of vectors whose cluster membership was wrongly identified when

time-interpolation based preliminary estimates are used, as a function of the drop fraction, for various

codebook sizes. Comparison with Figure 5.27 shows that the cluster-membership-identification error is

significantly less than that seen when clusters memberships are identified based on observed elements

alone. The temporal continuity imposed by the preliminary estimates improves the cluster membership

identification greatly. Figure 5.34 shows the MSE in reconstruction as a function of the fraction of ele-

ments missing, for various codebook sizes. We observe, in this case, that unlike the case of cluster mar-
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Figure 5.33 Percentage of vectors whose cluster membership was wrongly identified, as a function of drop fraction,
for various codebook sizes.
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Figure 5.34 MSE for spectrogram reconstructed by cluster time-interpolated reconstruction, as a function of drop
fraction, for various codebook sizes
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ginal reconstruction (Figure 5.28), the MSE actually improves with increasing codebook size. This is due

to the improved estimation of cluster membership.

Figure 5.35 shows an example of the estimated complete spectrogram obtained by cluster time-interpo-

lated reconstruction, with different codebook sizes, when 70% of the elements in the incomplete spectro-

gram are missing. Predictably, the reconstructed spectrogram visually resembles the original spectrogram

as codebook size increases.

Figure 5.36 shows recognition accuracy obtained using reconstructed spectrograms for various code-

book sizes. Recognition accuracy is seen to improve with every increase in codebook size, following the

trend in the MSE. Recognition accuracies for codebook size 512 are significantly greater than those

obtained by cluster marginal reconstruction. Comparison with Figure 5.14 also establishes that the recogni-

tion accuracy obtained here is higher than that using purely geometrical reconstruction using linear inter-

polation across time (Section 5.2.4).

5.3.6 Cluster-based reconstruction methods summary

Cluster-based reconstruction methods can be very effective in reconstructing missing regions of spec-

trograms. The introduction of the vector statistics of spectral vectors improves the reconstruction signifi-

cantly over methods that use purely local information, such as linear and non-linear interpolation. 

When clusters memberships are identified based only on the observed components of spectral vectors,

the performance obtained with multiple-cluster-based representations is similar to that obtained when the

distribution of spectral vectors is modeled as a single Gaussian. This seems to indicate that the single

Figure 5.36 Recognition accuracy with reconstructed spectrograms as a function of drop fraction, for various code-
book sizes.
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Figure 5.35 Reconstructed spectrograms when cluster membership was identified based on a preliminary estimate by 
linear interpolation along time

Panel 1: Original spectrogram Panel 2: Spectrogram with 70% of its elements
randomly deleted

Panel 3: Spectrogram reconstructed with cluster
based representation of codebook size 2

Panel 4: Spectrogram reconstructed with code-
book size 8

Panel 5: Spectrogram reconstructed with code-
book size 64

Panel 6: Spectrogram reconstructed with code-
book size 512
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Gaussian model for the distribution of vectors is as good as, or better than the Gaussian mixture model

implied by multiple-cluster-based representations, for the purpose of reconstruction. In the absence of any

additional criterion of localizing the position of the complete vector, the two models perform similarly.

Preliminary estimates of missing elements given by linear interpolation along time provide the localiza-

tion of the vector needed to obtain better performance with multiple-cluster-based representations. The

inclusion of temporal information in the reconstruction procedure in the form of the temporal continuity

enforced by the preliminary estimate improves the quality of the reconstruction significantly. However, the

information used in the preliminary estimate is purely local. It stands to reason that if prior information

regarding the statistical relationships between the components of different vectors could be used the qual-

ity of the reconstruction can be further improved.

There are several ways of statistically modeling the temporal continuity between elements in the spec-

trogram. One method would be to model the sequence of spectral vectors as the output of a hidden Markov

model (HMM) [Therrien 1992], or a higher-order HMM [Therrien 1992], rather than as a sequence of IID

vectors. However HMMs and higher order HMMs are complicated models requiring many parameters. A

much simpler model would be to simply model the statistical correlations between the various elements in

the spectrogram explicitly. The following section deals with such a method.

5.4 Covariance-based reconstruction

A very simple statistical model for the spectrogram is to consider the sequence of spectral vectors that

constitute a spectrogram to be the output of a Gaussian wide-sense stationary (WSS) random process

[Papoulis 1991]. All possible spectrograms are assumed to be individual observations from a single pro-

cess. The statistical parameters of this process are then used to obtain estimates for the missing compo-

nents of incomplete spectrograms.

We refer to spectrogram reconstruction methods based on this model as covariance-based reconstruc-

tion methods.

The assumption of wide-sense stationarity leads to the assumption that the means of the spectral vec-

tors, and the covariances between elements in the spectrogram are independent of their position in the

spectrogram. If we define the mean of the th element of the th spectral vector , , and thek t S t k,( ) µ t k,( )
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covariance between the th element of the th spectral vector and the th element of the th

spectral vector , , as

(5.30)

where  stands for the expectation operator, the assumption of wide-sense stationarity gives us the fol-

lowing properties for these parameters [Papoulis 1991]

(5.31)

(5.32)

In other words, the expected value  of the th component of a spectral vector is not dependent on

where the vector occurs in the spectrogram. Similarly, the covariance between the components of two

spectral vectors depends only on the distance  between the vectors (along the time axis) and not on where

they occur in the spectrogram. The means of the components of the spectral vectors  and the various

covariance parameters  can now be learned from a training corpus of uncorrupted spectro-

grams. The implication of the assumption of a Gaussian process is that the joint distribution the compo-

nents of all the spectral vectors in a sequence of vectors is Gaussian. Additionally, the distribution of any

subset of the components in a sequence of vectors is also Gaussian [Papoulis 1991]. Therefore these means

and covariances describe the process completely and are all that are needed to estimate missing compo-

nents of spectrograms. 

The  values define the expected value of every component in a spectrogram and the 

values define the covariance between any component in the spectrogram and any other component in it. 

(5.33)

To reconstruct an incomplete spectrogram  the observed components of the spectrogram are arranged

into a vector . The missing components are arranged into a vector . Since we know the mean values
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of all the components in the spectrogram and the covariance between any two components in it, the means

of the individual components of  and  and the covariances between their various components are all

known. These can be used to construct  and , the mean vectors of  and  respectively, ,

the autocovariance matrix of , and , the cross covariance between  and . 

Explaining the construction of  and  with an example

We illustrate the construction of  and  with a simple example. Figure 5.37 shows an example of a

small spectrogram consisting of only four spectral vectors, each of which has only four components. Each

of the elements in the spectrogram has been identified by a tag for convenience. All grey boxes in the fig-

ure represent missing elements.

The vector of observed elements , and the vector of missing elements  are constructed for this

example as

The expected value of all elements in any row is assumed to be the same (since the vectors are assumed

to be the output of a WSS process). The mean vectors for  and  are therefore constructed as

So Sm

µm
S µo

S Sm So Coo

So Cmo Sm So

Sm So

Sm So

Figure 5.37 Example showing how the missing and observed components of a spectrogram can be separated into a
vector of missing components and a vector of observed components, and the corresponding mean and covariance val-
ues. The figure represents a spectrogram with 4 spectral vectors, each with 4 elements. Each column of elements rep-
resents a single spectral vector. The grey elements are missing. 
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The autocovariance matrix of  is a 9x9 matrix constructed as

Similarly, the cross covariance between  and  is a 7x9 matrix given by

The means and covariances of the vector of observed elements  and the vector missing elements

, and the cross covariance between them can now be used to obtain an MAP estimate for :

(5.34)

Equation (5.34) would perform global reconstruction of all the missing elements in the damaged spec-

trogram in a single reconstruction step. However, the direct computation of Equation (5.34) would require

inversion and multiplication of extremely large matrices. For example a typical 4 second utterance has 400

frames. If the spectral vectors have 20 frequency components each, there are 8000 components in all in the

spectrogram. If 50% of the components are missing, both  and  are 4000 x 4000 matrices. Direct

computation of Equation (5.34) would therefore necessitate the inversion of a 4000x4000 matrix, followed

by the multiplication of two 4000x4000 matrices. If the utterance were longer the matrices would become

still bigger. Clearly, the matrix operations required are impractical. A much more practical solution would
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be to reconstruct the missing elements of the picture incrementally. 

5.4.1 Reconstructing missing elements individually

The simplest reconstruction would be to reconstruct each missing element in the spectrogram indepen-

dently of every other missing element. Let  be the missing element being estimated. Note here that

 is an element of the vector of missing components, . The covariances between  and the

various components of  can be used to construct the cross-covariance matrix between the two. We rep-

resent this matrix by . Note that the components of  form one row of , the cross

covariance between  and .

The MAP estimate of  can now be obtained as

(5.35)

where  is the expected value of  as given in Equation (5.33). Initially there does not appear to

be any advantage to using Equation (5.35) since the dimensionality of , the matrix being inverted in

Equation (5.35), is no different from that in Equation (5.34) and the estimate of  obtained from the

two equations is identical. However, the estimation can be considerably simplified by taking advantage of

the fact that all components of  do not contribute equally to the estimate of . 

The relative covariance between two components  and  of the spectrogram is

defined as

(5.36)

If  were to be estimated based on only one component of , say , then it can be

shown that the estimate of  is given by

(5.37)
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Clearly, as the relative covariance  between  and  decreases, the contri-

bution of  to the estimate of  decreases linearly. For very small values of 

therefore, its contribution to the estimate of  becomes negligible. In general, the contribution of any

element of  to the estimate of  is low if it has low relative covariance with ,

provided  also has low relative covariance with other elements of  that have high relative

covariance with . In this situation  can be removed from the conditioning vector  with-

out significant increase in the MSE of estimation.

It is observed that the relative covariance  between two elements , and

 of a spectrogram falls off very quickly as either  or  increases. Figure 5.38 shows

the variation of  as a function of  and  for two different values of . In both cases we

observe that  falls very rapidly from its peak value of 1.0 as both  and  increase, fall-

ing below 0.5 for  or .

As a result, most elements of  have very low relative covariance with . Additionally, these

elements also have low relative covariance with those elements of  that have a high relative covariance
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Figure 5.38  The left panel shows the relative covariance between the energy in the 8th frequency component (k=8)
of any spectral vector and other elements of the spectrogram. The right panel shows the relative covariance between
the energy in the 12th frequency component (k=12) of any spectral vector and other elements in the spectrogram
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with . The vector of observed elements that is used to estimate  can therefore be constructed

from only those observed components of the spectrogram that have a high relative covariance with it, i.e.

components that have a relative covariance above some threshold . If we denote the vector constructed

of observed components that are used to estimate  by , we would get the following rule for

the construction of 

(5.38)

Note that the vector of observed components  is specific to .  typically has

much fewer components than . We refer to the set of elements in  as the neighborhood of

. We refer to  as the neighborhood vector of . Once  has been constructed,

its mean vector  can be constructed using the expected values of its components, and its autocova-

riance matrix , and the cross-covariance matrix between  and ,  can

be constructed using the covariance between their components. The estimate for , the missing com-

ponent, is now obtained as

(5.39)

All the missing elements in the spectrogram can be estimated in this manner to reconstruct the complete

spectrogram. 

A simple example of constructing  for the estimation of a missing element

We illustrate the construction of , and the corresponding mean and covariance parameters with

an example. Figure 5.39 shows a small spectrogram of 16 elements. All elements shaded grey in the pic-

ture are missing.

In order to estimate (shown in a lighter shade of grey), all elements  in the spectrogram,

such that  are identified. These are represented by the dotted elements in the spectro-

gram. The vector of observed elements  is now constructed as
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The mean vectors for  and  are constructed as

The autocovariance matrix of  is a 5x5 matrix constructed as

The cross covariance between  and  is a 1x5 matrix given by

The estimate of  would be given by 

Figure 5.39 An example spectrogram with 4 spectral vectors, each with 4 elements. The grey elements are missing.
The neighborhood vector and the various statistical parameters for the estimation of S(2,2), the element shaded light
grey, are to be constructed.
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The optimal relative-covariance threshold  has to be empirically determined. Figure 5.40 shows rec-

ognition accuracy obtained using reconstructed spectrograms for incomplete spectrograms with 90% of

their elements (randomly) missing, as a function of the relative-covariance threshold. As can be seen from

the figure a relative-covariance threshold of around 0.5 seems to be optimal. In fact, this was found to be

the optimal relative-covariance threshold at all drop fractions. Including elements with relative covariance

below 0.5 in the reconstruction is actually seen to result in poorer reconstruction. 

Therefore, using 0.5 as the threshold,  would, in principle, contain all the elements that are

observed in the spectrogram and have a relative covariance greater than 0.5 with . In practice it has

been observed that when a 20 dimensional mel-spectral representation is used for the spectrograms, it is

sufficient to include the 16 observed elements of the spectrogram with the greatest relative covariance with

 in  and the inclusion of any more elements does not improve the reconstruction further.

The complete procedure for reconstructing a complete spectrogram from an incomplete one therefore con-

sists of constructing  with upto 16 elements and the corresponding statistical parameter vectors

and matrices for every missing element  in the spectrogram and computing the estimate for 

using Equation (5.39).

We refer to this procedure of estimating individual missing elements of the spectrogram as covariance

individual reconstruction. The nomenclature indicates the fact that covariance-based reconstruction is

being performed, and that missing elements are being individually estimated.
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Figure 5.40 Recognition accuracy with spectrograms reconstructed by covariance-based estimation of individual
missing elements, as a function of the relative-covariance threshold used to select elements for the neighborhood vec-
tor for missing elements. The incomplete spectrograms had 90% of their elements missing.
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5.4.2 Jointly reconstructing all missing elements in a vector

Instead of estimating all the individual missing elements in the incomplete spectrogram separately we

could reconstruct all the missing elements in a spectral vector simultaneously. We refer to this procedure as

covariance joint reconstruction. This procedure is a compromise between reconstruction of individual ele-

ments and global reconstruction of the entire picture. Let  be the th spectral vector in the spectro-

gram. The missing components in  can be separated into a vector of missing elements, the missing

element vector . A vector  can now be constructed of all observed elements in the spectro-

gram that have a relative covariance of at least 0.5 with at least one of the elements in . The thresh-

old of 0.5 is applied for the same reason that it was used in the earlier section where missing elements were

being individually estimated - this eliminates all components whose contribution to the reconstruction is

unreliable, while reducing the dimensions of  greatly. We refer to the elements of  as the

neighborhood of , and  as the neighborhood vector of . Once again, while  in

principle contains all observed elements in the spectrogram with a relative covariance greater than 0.5 with

any of the elements of , in practice limiting  to include no more than 16 elements that have a

high relative covariance with any one of the elements in  does not result in any degradation in per-

formance for the case of 20 mel filter based spectrograms.

The mean vector and covariance matrix of the elements in ,  and  can be con-

structed as before. Similarly, the mean vector of , , and the cross-covariance matrix between

 and ,  can be constructed. The missing elements in the th vector of the spectrogram

can now be estimated using the MAP Equation:

(5.40)

An example of constructing  for joint estimation of all missing elements in a vector

We illustrate the construction of , and the corresponding mean and covariance parameters with an
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example. 5.41 shows a simple spectrogram with 4 spectral vectors, each with 4 elements. All elements

shaded grey are missing. It is desired to estimate all missing elements in the second spectral vector. The

elements to be estimated are shaded light grey.

The missing element vector for the second spectral vector is constructed as

The neighborhood vector for  is constructed of all the elements  in the spectrogram, such

that either , or . These are represented by the dotted elements in

the spectrogram. This gives us

The mean vectors for  and  are constructed as

The autocovariance matrix of  is a 7x7 matrix constructed as

Figure 5.41 The figure represents a small spectrogram with 4 spectral vectors, each with 4 elements.The grey ele-
ments are missing. We wish to estimate all the missing elements in the second spectral vector jointly. These are
shown in a lighter shade of grey in the figure. 

S(3,1)

S(2,2)

S(1,3)

S(1,2) S(4,2)

S(4,1)

S(3,3)

S(2,4)S(1,4)

S(2,3)

S(3,4) S(4,4)

S(4,3)

S(3,2)

S(2,1)S(1,1)

Sm 2( ) S 2 2,( ) S 2 4,( ),[ ]T=

Sm 2( ) S t k,( )

r t 2 2 k, ,–( ) 0.5≥ r t 2 4 k, ,–( ) 0.5≥

So 2( ) S 1 2,( ) S 1 4,( ) S 2 1,( ) S 2 3,( ) S 3 2,( ) S 3 3,( ) S 3 4,( ),, , , ,,[ ]= T

So 2( ) Sm 2( )

E So 2( )[ ] µo
S 2( ) µ 2( ) µ 4( ) µ 1( ) µ 3( ) µ 2( ) µ 3( ) µ 4( ),, , , , ,[ ]T= =

 

E Sm 2( )[ ] µm
S 2( ) µ 2( ) µ 4( ),[ ]= =

So 2( )



Chapter 5. Spectrogram reconstruction methods for missing data 100

The cross covariance between  and  is a 2x7 matrix constructed as

The MAP estimate for the two missing elements in the second vector would now be obtained as

To reconstruct the complete spectrogram, the vector of missing components , the corresponding

vector of observed elements with high relative covariance,  and the associated mean vectors and

covariance matrices would be constructed for each spectral vector in the spectrogram. This missing com-

ponents in the spectral vector,  would then be estimated using Equation (5.40).

5.4.3 Experimental results with covariance based reconstruction

Covariance-based reconstruction was evaluated using the DARPA RM database, using the random-

drop paradigm and the experimental setup used in all other experiments described in this chapter. The sta-

tistical parameters used for the reconstruction, i.e. the means of frequency components,  and the var-

ious covariance values  were all learned from the training corpus that was used to train the

HMMs. 

Figure 5.42 shows the mean squared error of reconstruction as a function of the drop fraction in the

incomplete spectrograms for both covariance individual reconstruction and covariance joint reconstruc-
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tion. The figure also shows the MSE obtained using the best cluster-based method (cluster time-interpo-

lated reconstruction) as well as the oracle MSE for cluster-based reconstruction with a codebook size of

512. We observe that covariance-based reconstruction results in better MSE than the best cluster-based

method, and is in fact comparable with the MSE of cluster oracle reconstruction, except at very high drop

rates. Also, the MSE obtained using joint estimation of the missing elements in a vector is marginally bet-

ter than that obtained when the missing elements are individually estimated.

Figure 5.43 shows an incomplete spectrogram with a drop fraction of 90%, the reconstructed spectro-

gram obtained with covariance individual reconstruction and covariance joint reconstruction. We observe

that even at this high drop rate the reconstruction is quite good. At similar drop rates the best cluster-based

reconstruction technique was ineffective (Section 5.3.5).

Figure 5.44 shows the recognition accuracy obtained using reconstructed spectrograms as a function of

the fraction of elements that were missing in the spectrogram. Both covariance individual reconstruction

and covariance joint reconstruction are evaluated. Recognition accuracies obtained using the best cluster-

based reconstruction method, i.e. cluster time-interpolated reconstruction, are also shown. Covariance-

based reconstruction methods clearly result in the best recognition accuracies. For these test conditions the

recognition accuracy obtained with reconstructed spectrograms, when 80% of the elements in the incom-

plete spectrogram are missing, is not much worse than the recognition accuracy obtained with uncorrupted

spectrogram. The superior performance of covariance-based reconstruction methods is attributable to the

fact that many more neighboring points are available to reconstruct any point in covariance-based recon-
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Figure 5.42 MSE of reconstruction for covariance individual reconstruction, covariance joint reconstruction, the best
cluster-based reconstruction method (time interpolation based estimation), and the ideal cluster-based method (with
oracle knowledge of cluster membership of spectral vectors).
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structing, than in cluster-based reconstruction.

Joint estimation of missing elements in a vector is seen to result in better reconstruction than recon-

struction of individual elements at high drop rates. We hypothesize that joint global reconstruction of all

the missing elements in the picture would result in still better recognition accuracies.

5.5 Comparison with classifier-compensation techniques

Figure 5.45 compares the recognition accuracy obtained using the best cluster-based and covariance-

based methods with that obtained using class-conditional imputation and marginalization. We observe that

spectrogram reconstruction methods result in much better recognition accuracies than those obtained by

Figure 5.43  Spectrograms reconstructed by covariance-based estimation of missing elements

Panel 1: Original spectrogram Panel 2: Spectrogram with 90% of its elements
randomly deleted

Panel 3: Reconstructed spectrogram obtained by
estimating missing elements individually

Panel 4: Reconstructed spectrogram obtained by
estimating all missing elements in a vector jointly
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class-conditional imputation. Marginalization still results in the best recognition accuracies. 

Nevertheless, spectrogram reconstruction methods hold the advantage that it is now possible to use the

reconstructed spectrograms to derive other parameters/features such as cepstra which can be used to per-

form recognition. Recognition accuracies obtained using cepstra are typically much greater than those

obtained with log spectra. Marginalization, on the other hand, requires the recognition system to be trained

on spectrographic features. As a result cepstra derived from the spectrograms reconstructed by spectro-

gram reconstruction techniques can be used to obtain greater recognition accuracies than those obtainable

with marginalization (using log-spectra-based recognition). Figure 5.46 shows recognition accuracy

obtained with cepstra derived from spectrograms reconstructed by covariance joint reconstruction and
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Figure 5.44 Recognition accuracy for covariance-based estimation of individual missing elements, covariance-based
joint estimation of missing elements in a vector, and the best cluster-based reconstruction method (cluster time-inter-
polated reconstruction).
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Figure 5.45 Comparison of recognition accuracies obtained with various incomplete-spectrogram methods, as a
function of fraction of elements missing in the spectrogram. The methods compared are the best spectrogram recon-
struction methods, i.e. covariance joint reconstruction and cluster time-interpolated reconstruction, with those
obtained with classifier-modification methods, i.e. marginalization, and class-conditional imputation.
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compares it with the recognition accuracy obtained with and marginalization and log-spectra-based recog-

nition.

5.6 The short list of useful methods

We have proposed and evaluated several methods of estimating missing elements in incomplete spec-

trograms in this chapter. While evaluation on the basis of the random-drop paradigm is not comprehensive

in any sense, it permits us to short-list the techniques that show promise of being useful.

Among geometrical reconstruction techniques it was found that linear interpolation methods outper-

form non-linear interpolation methods. Further, interpolation along time was superior to interpolation

along frequency. Among geometrical reconstruction techniques therefore linear interpolation along time is

the most useful. 

Among cluster-based reconstruction techniques single cluster reconstruction, cluster marginal recon-

struction and cluster time-interpolated reconstruction were all seen to be useful.

Among covariance-based reconstruction techniques covariance joint reconstruction was superior to

covariance individual estimation.

We therefore short-list linear interpolation along time, single cluster reconstruction, cluster marginal

reconstruction, cluster time-interpolated reconstruction, and covariance joint reconstruction as possibly

useful methods worthy of further investigation. All of these methods differ from each other in a fundamen-

tal manner. Other methods have not been considered any further in this thesis, and where presented have
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Figure 5.46 Recognition accuracy using cepstra computed from reconstructed spectrograms as a function of drop
fraction. The recognition accuracy obtained using marginalization on log-spectra based recognition is also shown.
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only been presented for reasons of comparison.

5.7 Summary and conclusions

Spectrogram reconstruction methods are seen to be as effective as classifier-modification methods

(class-conditional imputation and marginalization) for handling spectrograms with missing elements. Even

simple, purely geometrical, reconstruction methods such as linear and non-linear interpolation are seen to

result in fairly effective reconstruction of missing elements when the missing elements are missing com-

pletely at random. The best geometrical reconstruction is achieved with linear interpolation. Reconstruc-

tion methods that utilize temporal relations between elements, e.g. linear interpolation across time, are in

general more useful than methods that utilize relationships across frequency bands. This leads us to believe

that there is greater continuity between elements across time than there is across frequency.

The use of prior statistical information about the correlations between elements in the spectrogram is

very beneficial to the reconstruction. Cluster-based reconstruction techniques utilize the distribution of

spectral vectors in the spectrogram. Cluster marginal reconstruction, a cluster-based reconstruction tech-

nique that works only with frequency components within a vector, results in significantly superior recon-

struction to linear interpolation across frequency, a method that uses purely local information about

frequency components. Cluster time-interpolated reconstruction, which combines linear interpolation

across time with cluster-based reconstruction, is superior to that obtained with linear interpolation across

time alone. In other words, the combination of geometrical reconstruction based on temporal continuity

and statistical reconstruction based on statistical relationships across frequency bands results in superior

performance to that obtained with local reconstruction based on temporal continuity alone.

The introduction of prior statistical information regarding the relationship between elements both

across frequency and across time improves the reconstruction still further. Covariance-based reconstruc-

tion methods use statistical correlations between elements, both across time and across frequency explic-

itly. They are seen to result in the best reconstruction. Covariance-based reconstruction is generally

observed to be better when multiple elements are jointly estimated than when they are estimated individu-

ally. We speculate that the best reconstruction would be obtained when all the missing elements in the

spectrogram are jointly estimated. However, this is computationally infeasible.
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In all of the methods described in this chapter the statistical information about the relationship between

elements in the spectrogram is represented by very simple models. Cluster-based reconstruction uses a

very simple cluster-based representation of the statistics. Within each cluster the distributions are further

represented by a very simple Gaussian distribution. Covariance-based reconstruction uses an even simpler

statistical representation - the entire spectrogram is represented as the output of a single WSS Gaussian

random process. The reconstruction is performed using only the statistical parameters of this process.

Better statistical representations are likely to result in better reconstructions. The simple cluster-based

representation used by cluster-based methods treats the sequence of vectors that constitute the spectrogram

as independent. Consequently the model permits any vector to follow any other vector and retains no infor-

mation regarding the sequentiality of the vectors. A superior model would be to model the individual clus-

ters as the states of a Markov chain, i.e. modeling the sequence of vectors as the output of a hidden Markov

model (HMM) where the individual clusters are the states of the HMM. In an HMM the state (cluster) that

generates the current vector is dependent on the state that generated the previous vector. As a result the

HMM model captures some of the temporal relationship between vectors, modeling the manner in which

vectors can follow one another.

A more constrained model for the sequentiality of vectors would be to model the vectors as the output

of a higher-order HMM. While standard HMMs condition the probability of a vector on the state that gen-

erated the previous vector, an th order HMM conditions it on the states that generate the previous  vec-

tors.

The statistical model used with covariance-based reconstruction can also be improved. Covariance-

based reconstruction models the sequence of spectral vectors as the output of a single wide-sense station-

ary random process. A more detailed representation would model the sequence of vectors as the output of a

process that switches between a set of random processes. A simpler model would be to treat blocks of vec-

tors as the basic unit in a cluster-based representation. Either model would capture the statistical relation-

ships between elements in different vectors, i.e. relationships across time, with greater detail than the

single Gaussian representation used by the covariance-based reconstruction methods described in this

chapter. However, both representations would have the additional problem of identifying the cluster or ran-

dom process associated with each of the vectors. 

N N
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The speech recognition system itself encodes the acoustic, phonetic and linguistic information in

speech corpora using various statistical models and can therefore be used to estimate the missing regions of

the spectrogram. The statistical representation used by speech recognition systems is extremely detailed,

including statistical models for the acoustic parameters derived from the speech, lexical representations of

the data [Rabiner 1993], and N-gram statistical models to model the language [Katz 1987]. The lexical and

language models provide additional sources of information not available to any of the other statistical mod-

els described earlier in this section. Consequently, using the speech recognition system itself to reconstruct

damaged regions of spectrograms is likely to give the best reconstructions. One could use marginalization

to obtain the best state sequence to represent the vectors. The distribution of the state associated with each

vector can then be used to reconstruct the missing components of that vector. This would however necessi-

tate performing recognition on the damaged utterance in order to obtain the best state sequence, which is a

computational overhead that we would prefer to avoid.

All the spectrogram reconstruction methods described in this chapter, as well as the classifier-modifica-

tion techniques described in Chapter 4 have so far been evaluated using the random-drop paradigm. How-

ever, the primary goal of developing these techniques was to compensate for the effect of additive noise on

speech recognition systems. In the next chapter we evaluate the performance of all these methods as noise

compensation techniques.
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Chapter 6
Missing feature methods and noisy speech

6.1 Introduction

In the previous chapters we have evaluated several methods to recover data for spectrograms with ran-

dom regions missing. In this paradigm the probability that any given element in the vicinity of a missing

element is observed depends only on the drop fraction, and is independent of the fact that that element is

missing. Therefore the probability that any of the observed elements in the spectrogram will have a relative

covariance greater than a given threshold with the missing element also depends exclusively on the drop

fraction. If there are  elements in the spectrogram that have a relative covariance greater than 0.5 with a

missing element the probability that at least one of them will be observed is , where  is the drop

fraction. For example, if there are only five elements in the spectrogram with a relative covariance greater

than 0.5 with the missing element, i.e. if , the probability that at least one of them is observed when

the drop fraction is 90% ( ) is 0.41. Thus, when elements of the spectrogram are deleted at ran-

dom there is a relatively high probability that a missing element is well correlated to at least one of the

observed elements in the spectrogram even at very high drop fractions. Obviously, for an incomplete spec-

trogram method to be useful it has to work well on the random-drop paradigm. Methods that do not work

well even in this situation can, in general, be expected to perform worse in situations where the errors are

more systematic and some of the missing components have a very low probability of being well correlated

with any of the observed elements. The random-drop paradigm is therefore a very useful paradigm for pre-

liminary evaluation of missing feature methods.

However, except for some special situations such as spectrograms that have been stored on a medium in

which random regions have been corrupted, or transmitted spectrograms where elements have been lost in

transmission, the random-drop model is unrealistic. When deletions in the spectrogram are due to the effect

of corrupting noise the patterns of the missing components are usually much more systematic.

As explained in Sections 3.3 and 3.4, the effect of corrupting noise on speech can be modeled as miss-

ing features by deleting all regions of the spectrogram where the local SNR is below a threshold, leaving

only the cleaner portions of the spectrogram behind. Figure 6.1 shows two such examples of spectro-
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graphic masks, or deletion patterns in spectrograms, where all elements with local SNR less than 0 dB

have been erased. All white regions represent regions that have been deleted and the black regions repre-

sent regions that have been retained. In one of the examples the speech has been corrupted by white noise

to a global SNR of 10 dB. In the other example the speech has been corrupted by a segment of music, also

to a global SNR of 10 dB.

We observe in these spectrograms that the pattern of missing components is not completely random.

Missing regions in such spectrograms occur in blocks. If any element in the spectrogram is missing it is

highly probable that its neighbors are missing too. Another characteristic of the missing regions is that they

are correlated to the underlying speech spectrum. Valleys in the spectrum are more likely to be corrupted to

lower SNRs than peaks in the spectrum, and are therefore more likely to be deleted. Thus, the pattern of

deleted elements is not only likely to be systematic, it can also favor the deletion of some patterns of spec-

tral features over others. 

One consequence of systematic block deletions such as these is that is that the elements of the spectro-

gram that have a high relative covariance with any of the missing elements are likely to be missing as well.

The performance of any incomplete spectrogram method being applied, either for classification or for
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Figure 6.1 Two spectrographic masks. The left panel shows the mask for speech corrupted by white noise to 10 dB
where all regions with a local SNR less than 0 dB have been deleted. The white regions in the picture have been
deleted. The black regions are the “clean” regions and have been retained. The right panel shows a similar mask for
speech that has been corrupted by music to 10 dB. The white regions are the unreliable regions with local SNR less
than 0 dB and have been deleted.
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reconstruction, is likely to be adversely affected by the block nature of the deletions. Thus, it is not definite

that any missing feature method that performs well on spectrograms with random elements missing will

also perform well with the kinds of deletion patterns seen in noisy speech as well.

An additional factor affecting the direct application of incomplete spectrogram techniques for noise

compensation is that, even after the highly noisy portions of the spectrogram have been deleted, the

remaining regions are not completely noise free. They continue to have low levels of noise. As a result the

performance of any classification or reconstruction methods that are conditioned on these regions is likely

to be worse than their performance on spectrograms of clean speech with identical missing regions.

In this chapter we evaluate and compare the performance of classifier-modification methods (class-con-

ditional imputation and marginalization) and the spectrogram reconstruction methods described in Chapter

5 on speech that has been corrupted by white noise. The goal of the spectrogram reconstruction methods

here is not to recreate the corresponding noisy spectrograms from the incomplete spectrograms, but to esti-

mate what the value of these regions would have been had the spectrogram been clean. In this situation, the

MSE between the reconstructed spectrogram and the complete (noisy) spectrogram is an inappropriate

metric to measure the performance of the missing feature methods. We therefore evaluate the performance

of the spectrogram reconstruction methods solely on the basis of the recognition accuracy obtained with

the reconstructed spectrograms. Another important factor for consideration in noise compensation algo-

rithms is the computational complexity of the algorithms. Procedures that take less time to perform are

preferable to those that take more time. We evaluate the computational complexity of incomplete spectro-

gram reconstruction methods in terms of the total time taken to recognize an average utterance when they

are used, and compare the computational complexity of spectrogram reconstruction methods with that of

classifier-modification methods.

In many of the recognition experiments reported in the rest of this chapter the recognition accuracy

obtained is shown to be less than 0%. This is not a paradox. In all experiments recognition accuracy has

been measured in terms of the standard NIST metric. According to this metric errors in recognition are cat-

egorized into three types: substitutions, deletions, and insertions. A substitution is an error where the rec-

ognizer has recognized a word wrongly in an utterance. A deletion is an error where the recognizer has

failed to hypothesize a word that has occurred in the utterance. An insertion is an error where the recog-

nizer has hypothesized a word where there was no word at all in the utterance. The total error is the sum of
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all three types of errors. Since the recognizer can make many insertion errors, the total number of errors

can be much greater than the number of words that were actually uttered. When expressed as a percentage,

this would be much greater than 100%. Accuracy is measured as 100 - (Error percentage). When errors are

greater than 100%, this would become negative.

6.2 Performance of missing feature methods on speech corrupted by noise

The effectiveness of incomplete-spectrogram methods for noise compensation was evaluated by per-

forming recognition experiments on speech corrupted by white noise. Continuous HMMs with 2000 tied

states, each modeled by a single Gaussian density, were trained on the mel spectrograms of 2880 utterances

of clean speech. The test set consisted of 1600 utterances from the RM test set. The utterances in the test

set were corrupted by additive white Gaussian noise (AWGN) and mel spectrograms were obtained from

the noisy speech. All elements of the spectrogram with a local SNR below a threshold were deleted. The

optimal SNR threshold was empirically determined.

An important point to note is that in all the experiments reported in this section the local SNR of each

element in the spectrogram was assumed to be known. This was possible because noisy speech signals

were obtained by corrupting clean speech signals with additive noise. Thus, both the clean speech signal

and the noise-corrupted speech signal were available, and therefore the spectrogram of clean speech and

the spectrogram of the corresponding noisy speech could be compared to evaluate local SNR values. In a

real-life situation the local SNR of noisy speech signals would not be known a priori and would have to be

estimated. In general, this is very difficult problem in itself, and has not been satisfactorily solved, to date.

We address the problem of estimating the local SNR in an unsupervised manner without the use of clean

speech spectrograms in Chapter 8, and propose some solutions to the problem.

6.2.1 Obtaining the optimal threshold

The first step in applying incomplete spectrogram methods to noisy speech is that of deleting all ele-

ments of the spectrogram that have a local SNR below a particular threshold. We refer to this threshold as

the deletion threshold. The value of this threshold affects the patterns of the missing regions and thereby

the performance of the incomplete spectrogram methods. Figure 6.2 and Figure 6.3 show the variation of

the recognition accuracy obtained using class-conditional imputation and marginalization respectively as a
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function of the deletion threshold, on speech corrupted to a global SNR of 15 dB and 25 dB by white noise.

Class-conditional imputation and marginalization are both seen to be extremely sensitive to the thresh-

old. Unlike in the case of random deletions the performance of class-conditional imputation is seen to be

very poor, resulting in negative recognition accuracies. Furthermore, as the deletion threshold increases in

terms of SNR, the performance degrades rapidly. No optimal deletion threshold can be identified. Margin-

alization, on the other hand, results in positive recognition accuracies. The optimal threshold for marginal-

ization is observed to vary with the global SNR of the speech. When the global SNR is 15 dB the optimal

deletion threshold is found at 15 dB. When the global SNR is 25 dB, the optimal deletion threshold is 20

dB. However, since the difference in performance between using a 15 dB deletion threshold and a 20 dB

deletion threshold is relatively small in both cases the generic deletion threshold for all noise conditions

has been chosen to be 15 dB. This is the deletion threshold used in all experiments with marginalization

reported later in this section. Since no optimal deletion threshold is identifiable for class-conditional impu-

tation, and also because a minor “bump” is visible in the plots in Figure 6.3 at 15 dB, we use 15 dB as the

SNR threshold for class-conditional imputation as well. We note that this is a high value for the deletion

threshold since now we delete all elements from the spectrogram where the energy of the corrupting noise

is even a thirtieth of that of the underlying speech. Cooke et. al. [Cooke 1999] also report that the optimal

deletion threshold for marginalization found in their experiments was very high. Their estimate of the opti-

mal value of the deletion threshold also translates to about 15 dB.

Figure 6.4 and Figure 6.5 show the recognition accuracy obtained with spectrograms reconstructed by
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Figure 6.2 Recognition accuracy vs. deletion threshold
using class-conditional imputation on speech corrupted
to 15 dB and 25 dB by white noise.

Figure 6.3 Recognition accuracy vs. deletion threshold
using marginalization on speech corrupted to 15 dB and
25 dB by white noise.
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cluster marginal reconstruction and covariance joint reconstruction respectively as a function of the dele-

tion threshold, on speech corrupted to a global SNR of 15 dB and 20 dB by white noise. The performance

obtained with geometrical reconstruction methods was extremely poor at all thresholds and is not shown.

The performance of cluster time-interpolated reconstruction, although very high when the missing regions

were randomly dropped, is extremely poor on speech corrupted by noise. Presumably this is because the

preliminary estimate of missing regions is obtained by linear interpolation across time, a geometrical

reconstruction method that also performs very poorly on noisy speech. 

The optimal deletion threshold for cluster marginal reconstruction and covariance joint reconstruction

is seen to be -5 dB, irrespective of the global SNR of the speech. Therefore, in the rest of this thesis this is

the deletion threshold used for all spectrogram reconstruction methods evaluated.

6.2.2 Performance on noisy speech spectrograms

The effectiveness of incomplete-spectrogram methods as noise compensation techniques was measured

on speech corrupted by white noise. Utterances from the RM test corpus were corrupted by white noise to

a variety of SNRs. The noisy portions of the spectrograms of these utterances were deleted and incomplete

spectrogram methods applied to these incomplete spectrograms. The SNR threshold used to delete noisy

regions was 15 dB for all classifier-modification techniques, and -5 dB for all spectrogram reconstruction

methods.

Figure 6.6 shows the recognition accuracy obtained with marginalization and class-conditional imputa-
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Figure 6.4 Recognition accuracy vs. deletion threshold
using cluster marginal reconstruction, for speech cor-
rupted to 15 dB and 25 dB by white noise. A codebook
size of 512 was used for the reconstruction

Figure 6.5 Recognition accuracy vs. deletion threshold
using covariance joint reconstruction of missing ele-
ments in a vector, for speech corrupted to 15 dB and 25
dB by white noise.
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tion on spectrograms of speech corrupted by white noise to different levels. The deletion threshold used in

all cases was 15 dB. The figure also shows the recognition performance obtained when the complete noisy

spectrograms are used for recognition directly (without deleting any elements). This is the performance

that would normally have been obtained had no noise compensation been attempted. We refer to this situa-

tion as the baseline. Marginalization is seen to be a very effective compensation method resulting in large

improvements over baseline recognition accuracy at all SNRs. However, class-conditional imputation is

seen to be completely ineffective. This result is in variance with the results reported by Cooke et. al.

[Cooke 1994], where they reported improvements even with class-conditional imputation, albeit on a dif-

ferent task.

Figure 6.7 shows the recognition accuracy obtained with several spectrogram reconstruction methods.

Linear interpolation along time, single cluster reconstruction, cluster marginal reconstruction and covari-

ance joint reconstruction are all represented. The recognition accuracies obtained with cluster time-inter-

polated reconstruction is not shown since its performance was far inferior to those of the methods

represented here, at all SNRs.

Covariance-based reconstruction is seen to result in improvements in recognition accuracy at most

SNRs. Single cluster reconstruction results in improvements at some SNRs. Multiple-cluster-based recon-

struction methods are, however, seen to be ineffective in general. Reconstruction methods that involve any
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Figure 6.6 Recognition accuracy obtained with margin-
alization and class-conditional imputation on spectro-
grams of noisy speech as a function of the global SNR
of the noisy speech. The baseline recognition accuracy
on noisy spectrograms is also shown.

Figure 6.7 Recognition accuracy with noisy spectro-
grams reconstructed by several spectrogram reconstruc-
tion methods as a function of the global SNR of the
noisy speech. The baseline recognition accuracy
obtained with noisy spectrograms is also shown
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geometrical reconstruction, i.e. linear interpolation along time, and cluster time-interpolated reconstruc-

tion, are observed to perform even more poorly. In general, the improvement obtained using spectrogram

reconstruction methods over baseline is not large. Comparison of Figures 6.6 and 6.7 also shows that the

performance obtained with spectrogram reconstruction methods is significantly poorer on noise-corrupted

speech than that obtained with marginalization.

However, it has been observed that the CMU Sphinx-III, which has been used in these experiments,

generates a large number of insertion errors when recognition of noisy speech is performed in the log spec-

tral domain. Simply put, the recognizer tends to hypothesize many more words than actually occur in the

utterance. These insertions are usually enumerated as errors. It has also been observed that the problem of

the large numbers of insertions is not usually present when recognition is performed with cepstra instead of

log spectra. Figure 6.8 shows the recognition accuracies obtained with cepstra derived from spectrograms

reconstructed with several spectrogram reconstruction methods. It also shows the baseline performance

obtained when recognition is performed with cepstra obtained directly from the spectrograms of noisy

speech (without any compensation). We observe that significant improvement in recognition accuracy is

obtained over baseline with all the spectrogram reconstruction methods. Even simple linear interpolation

along time results in improvements in recognition accuracy at all SNRs. Interestingly, the performance of

cluster-based reconstruction is superior to that of covariance-based reconstruction at low SNRs, but the sit-

uation gets reversed at higher SNRs. 
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Figure 6.8 Recognition accuracy obtained using cepstra
derived from spectrograms reconstructed by four spec-
trogram reconstruction methods, at several SNRs. Base-
line recognition accuracy with cepstra derived directly
from the noisy spectrograms is also shown.

Figure 6.9 Comparison of recognition accuracies in the
cepstral domain, obtained with the best cluster-based
and covariance-based reconstruction methods, with the
recognition accuracy obtained using marginalization in
the log-spectral domain.
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Figure 6.9 compares the recognition accuracy obtained in the cepstral domain with the best cluster-

based and covariance-based reconstruction methods - cluster marginal reconstruction, and covariance joint

reconstruction - with the performance obtained in the log-spectral domain with the best classifier-modifi-

cation method, marginalization (since marginalization cannot be performed in the cepstral domain). We

observe that the performance of spectrogram reconstruction methods in the cepstral domain is significantly

superior to that of marginalization in the log-spectral domain.

6.2.3 Computational complexity of incomplete spectrogram methods

The computational complexity of an algorithm is a measure of the number of mathematical operations

required by the computer to perform it. The greater the complexity of the method, the greater the number

of operations required, and therefore the greater the amount of time needed to perform it. Ideally we would

require any noise compensation algorithm to be minimally complex and take very little computation time.

To be able to compare the computational complexity of the various incomplete-spectrogram methods

accurately we would need to know the precise number of additions, multiplications, and other mathemati-

cal operations required to perform them. However, this number is not a constant for any of these methods

for several reasons:

1) The size of the covariance matrices being inverted in the MAP estimation procedure used by the

spectrogram reconstruction methods is not constant and varies from vector to vector. Consequently,

the number of multiplications needed to invert these matrices is not a constant number.

2) In cluster marginal reconstruction, the number of mathematical operations required to marginalize

out missing components is dependent on the number of elements missing in any vector. This is not a

constant.

3) The total number of missing elements in any noisy spectrogram is dependent on the characteristics of

the noise corrupting the signal, and can vary from utterance to utterance.

4) The speech recognition system does not evaluate all possible hypotheses during recognition, but

restricts itself to a small subset of hypotheses through a procedure called pruning [Ney 1992]. The

precise number of hypotheses evaluated varies from utterance to utterance. Thus, the total number of

mathematical operations performed by the recognition system is not a constant either.

As a result, the only realistic manner in which the computational complexity of any set of noise com-

pensation algorithms can be compared is on the basis of the total time taken to recognize an utterance,



Chapter 6. Missing feature methods and noisy speech 117

when these methods are applied.

Figure 6.10 shows the average time taken to recognize an utterance of speech corrupted to 10 dB by

white noise, when marginalization, class-conditional imputation, cluster marginal reconstruction, and

covariance joint reconstruction are used to compensate for noise. The time taken to recognize noisy

speech, without any compensation, is also shown. Recognition was performed using log spectra in all

cases.

When considering the numbers in Figure 6.10 it is important to note that the behavior of the recognition

system is not invariant across all cases. The recognizer usually takes more time to recognize a noisy utter-

ance than it does to recognize a clean one, because many more hypotheses are considered when the speech

is noisy. As a result, the average time taken to recognize an utterance using the log spectra of noisy speech

is actually longer than the time taken to recognize an utterance when spectrogram reconstruction methods

are used to compensate for the noise, although the latter includes the time taken to actually estimate the

missing elements in the spectrogram. Therefore, it would be incorrect to infer, based on the numbers in

Figure 6.10 that the relative differences between the time taken by class-conditional imputation, covari-

ance joint reconstruction, and cluster marginal reconstruction would remain the same at all SNRs. How-

ever, the variation in the time taken by the recognizer to recognize an utterance is not usually large enough

to account for the difference between the time taken by marginalization and that taken by the other meth-

ods. It is therefore reasonable to infer that while cluster marginal reconstruction and covariance joint
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reconstruction are approximately equivalent in terms of computational complexity, both of them are far

less complex than marginalization.

In all cases the true SNR of the elements of the spectrograms was known a priori, and was used to com-

pute the spectrographic masks. In a real situation SNRs would not be known a priori, and spectrographic

masks would have to be estimated. The time taken to estimate these masks would also have to be consid-

ered in measuring the computational complexity of any of the incomplete spectrogram methods. However,

since mask estimation would have to be performed irrespective of the method being used, the relative com-

plexities of the various methods would not change.

6.3 Summary and conclusion

In this chapter we have evaluated the performance of various incomplete-spectrogram methods on

speech corrupted by noise. We have found that the optimal SNR threshold for deleting noisy elements of

spectrograms is greater for classifier-modification methods than it is for spectrogram reconstruction meth-

ods. For classifier-modification methods the optimal threshold is found to be around 15 dB, whereas for

spectrogram reconstruction methods it is -5 dB. When recognition is performed in the log-spectral domain

we find that while marginalization is very effective in compensating for noise, among spectrogram recon-

struction methods only covariance-based reconstruction is effective. It is found, however, that the recog-

nizer makes a large number of “insertion” errors when recognition of noisy speech is performed in the log-

spectral domain, which account for the bad performance of the spectrogram reconstruction methods. When

recognition is performed in the cepstral domain using cepstra obtained from the spectrograms recon-

structed by the these methods, significant improvements are obtained over baseline. The recognition per-

formance obtained using cepstra derived from the reconstructed spectrograms is also superior to the best

performance obtained with classifier-modification methods. This reaffirms our hypothesis that the

improvement obtained by transforming the spectrograms to cepstra far outweighs the advantages of the

optimal classification performed by classifier-modification methods.

It was also observed that spectrogram reconstruction methods are rather less computationally expensive

than the best classifier-modification method, marginalization. This is an additional advantage to using

spectrogram reconstruction methods over classifier-modification methods.
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In all of the methods described thus far in this thesis, the noisy regions of the spectrogram have been

completely erased and treated as totally unknown. However, in most situations where speech has been cor-

rupted by noise, even the noisy regions of the spectrogram retain some information about the true value of

the spectrogram at that point. In the case of additive noise they give us an upper bound on the true value.

This information can be exploited to improve the performance of missing-feature methods even further.

The next chapter deals with the subject of missing-feature methods that exploit the information in noisy

regions of the spectrogram to improve recognition performance.
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Chapter 7
Recognition using spectrograms with unreliable data

7.1 Introduction

In Chapter 3 we described how the effect of corrupting noise on speech can be modeled by the deletion

of elements in the spectrogram of the corrupted speech signal. In this chapter we extend this approach to

tag noise corrupted regions of the spectrogram as “unreliable” instead of deleting them from the spectro-

gram entirely. The implication of tagging an element as being “unreliable” is that the observed value of the

element is not necessarily the same as its true value although it may be related to the true value in some

manner. The spectrograms resulting from such tagging are still incomplete in the sense that they have sev-

eral elements whose true value is unknown. However, the relation between the observed value of these ele-

ments and their true values provides some information regarding the true value. In the event that the

relationship between the values of the unreliable elements and their actual uncorrupted values is com-

pletely unknown, or that the values of the unreliable elements are completely independent of the uncor-

rupted value of the elements, the observed values of the elements convey no information and the elements

can be treated as missing. The advantage with denoting components as “unreliable”, instead of deleting

them altogether, is that the relation between the observed value of these components and their true value

can be used in recognition, or in the estimation of these components. 

In order to distinguish these spectrograms from spectrograms where nothing is known about the miss-

ing regions we refer so them as unreliable spectrograms (rather than incomplete spectrograms). We refer to

all methods dealing with the problem of recognition based on such spectrograms as unreliable-spectro-

gram methods.

We would like to establish some definitions relating to data sets with unreliable elements before we

proceed. We distinguish between the observed value of a data element, and the true value of the data ele-

ment. The observed value of a data element is its measured value. On the other hand the true value of a

data element is the value it would have had, had it not been corrupted in any manner. We further distin-

guish between reliable and unreliable data elements. A data element is reliable if its observed value is

known with certainty to be identical to true value of the element and unreliable otherwise. We call the

mechanism that renders the observed value of the data different from its true value the unreliability mecha-
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nism. The unreliability mechanism may be any non-invertible transformation that does not permit us to

infer the precise true value of the data from its observed value.

In this chapter we are specifically interested in unreliability mechanisms that ensure that the observed

value of an unreliable data point is guaranteed to be greater than, or equal to its true value. We call such a

mechanism as a bounding unreliability mechanism. Let us represent the observed value of a data set by 

and the true value of these data by . In reliable regions of the data set  is known to be the same as 

with certainty, and we refer to the corresponding set of data elements in these regions as  and . In the

unreliable regions  may not be the same as  and we denote these regions as  and 

The effect of a bounding unreliability mechanism can now be written as

(7.1)

We refer to the problem of estimating the value of  based on the values of  and  as the infer-

ence of unreliable data. The MAP procedure for estimation of missing elements (Section 2.5.4) can easily

be modified to estimate the true value of unreliable elements  when the unreliability mechanism is of

the kind described in Equation (7.1). Classification with unreliable data, on the other hand, is the problem

of identifying which of a set of classes the data  belong to, based only on .

In speech recognition systems the effect of additive noise can be modeled as the rendering of some

regions of the spectrogram unreliable. Classifier-modification methods such as marginalization and class-

conditional imputation can be modified for recognition with spectrograms with unreliable regions. The

spectrogram reconstruction methods described in Chapter 5 can also be modified to re-estimate the unreli-

able regions of corrupted spectrograms.

The next section describes the bounded MAP estimation procedure to estimate the true value of unreli-

able elements in a data set corrupted by a bounding unreliability mechanism. In the following section we

describe how the effect of additive noise on speech can be modeled as the rendering of some regions of its

spectrogram unreliable. In subsequent sections we describe how conventional classifier-modification

methods and the spectrogram reconstruction methods presented in this thesis can all be modified to work
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with spectrograms with unreliable regions, and how the bounded MAP estimation procedure can be

applied to these cases.

7.2 Bounded MAP estimation 

Consider a data set , consisting of two subsets  and  such that . Assume that

the distribution of  is known and is given by .  is known and  is unknown. It is, however,

known that , where  is the observed value of the data elements where  is unknown. The

expression  means that each element of  is less than or equal to the corresponding element in

.  is therefore the upper bound on . The a posteriori distribution of  is now given by

. The MAP estimate of  is therefore given by

(7.2)

We refer to the estimation described by Equation (7.2) as bounded MAP estimation. We can expand

 using Bayes’ theorem to obtain

(7.3)

This is a constrained variant of the standard (unbounded) MAP estimate, which is given by

(7.4)

Comparing Equations (7.2) and (7.3) with Equation (7.4), it is easy to see that when the peak value of

 occurs for some , the bounded and the unbounded MAP estimates are identical. They

only differ when the unbounded MAP estimate lies outside the region bounded by . Figure 7.1 shows

two examples of bounded MAP estimation.

When the distribution of  is Gaussian and  has only one component, it is easy to see that the
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bounded MAP estimate of  is given by

(7.5)

where  stands for the unbounded MAP estimate of , and  stands

for the bounded MAP estimate of , conditioned on  and subject to the bound . In other

words, the bounded MAP estimate of  lies either on the unbounded MAP estimate or on the bound .

However, when  has more than one component the situation is more complicated. In this case the

bounded MAP lies on the bounds of some of the components of  and these components would condi-

tion the unbounded MAP estimate of the rest of the components. Figure 7.2 explains this with an example

where  has two components. 
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Figure 7.1 Two examples of bounded MAP estimation. In both figures the ellipse represents the cross section of the
Gaussian distribution of the data. The X component of a vector has been observed and is represented by the solid line
along the X axis. The Y component has not been observed and has to be estimated. The regression line representing
the regular (unbounded) MAP estimates for various values of X is given shown by the diagonal line. 
Left panel: The upper bound on Y is 2.5. The bounded MAP estimate of Y (and the complete vector) therefore has to
lie within the shaded region and is given by the point where the distribution of all vectors with X=2 is highest, within
the shaded region. In this case the regular MAP estimate of Y (given by the point where the regression line intersects
the dotted vertical line at the observed value of X) lies within the shaded region. Therefore, the bounded MAP esti-
mate for the complete vector is identical to the regular MAP estimate. This is shown by the thick dashed line.
Right panel: The upper bound on Y is 1.0. The regular MAP estimate of the complete vector (shown by the thin dot-
ted line) lies outside the permitted region. The point where the distribution of vectors with X=2 peaks lies on the
actual bound in this situation. The MAP estimate for the complete vector is shown by the thick dashed line.
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However, when  is Gaussian, it can be shown [APPENDIX B] that the bounded MAP esti-

mate of all the components of  can be found iteratively. Let us represent the th element of  as

, the corresponding element of  as , and the current estimate of  as . Then, initial-

izing , where  is the total number of elements in , the bounded MAP esti-
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Figure 7.2 Examples of bounded MAP estimation when more than one element is to be estimated. In all cases the
ellipse represents a cross section of the Gaussian distribution of the random vector. In all cases both components of
the vector are unknown and are to be estimated. The regions shaded lightly represent the regions permitted by the
individual bounds on X and Y. The darkly shaded region is the intersection of both bounds. All valid MAP estimates
must lie in this region.

Panel 1: The bounded MAP estimate lies within
the bounded region, but on neither bound

Panel 2: The diagonal line represents the regres-
sion line relating the regular MAP estimate of X to
the corresponding Y. The bounded MAP estimate
lies where this line intersects the Y bound

Panel 3: The diagonal line represents the regres-
sion line relating the regular MAP estimate of Y to
the corresponding X. The bounded MAP estimate
lies where this line intersects the X bound.

Panel 4: Here the bounded MAP estimate lies on
neither regression line. Instead it lies at the point
where the X and Y bounds intersect.
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mate of all the components of  can be found by iterating the following equation until it converges.

(7.6)

Equation (7.6) states that if bounded MAP estimates are obtained for each of the elements of  itera-

tively, conditioned on both  and the current estimate of the rest of the elements of , the estimated

value of  will converge to its unbounded MAP estimate. The bounded MAP estimates for individual

components can be found using Equation (7.5).

The bounded MAP estimation of unreliable components of data is used to estimate unreliable regions of

spectrograms in several of the methods described in this chapter.

7.3 The effect of additive noise on spectrograms

In spectrograms of noisy speech the values of noisy regions of the spectrogram, while being too noisy

to be used directly for classification or recognition, are nevertheless related to the “true” value of the spec-

trogram in those regions (i.e. the value the spectrogram would have had, had the speech not been noisy).

The precise relation of these values is dependent on the particular noise corruption mechanism. In this

chapter we assume that the noise corrupting the speech is additive (irrespective of whether it is stationary

or non-stationary) and that it is uncorrelated with the speech signal. i.e.

(7.7)

where  represents the clean speech signal,  represents the corrupting noise signal, and  rep-

resents the observed noisy speech signal. Let us denote the spectrogram of  as , the spectrogram of

 as , and the spectrogram of  as . Then , the value of  at any point in the time-fre-

quency plane, is related to , the value of , and  to the value of  at the same point in the

time-frequency plane as [Papoulis 1991]

(7.8)

Since the spectrogram of a signal is guaranteed to be positive at all points on the time-frequency plane,

it follows that
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(7.9)

In other words, the value of the spectrogram of the noisy speech signal gives us an upper bound on the

spectrogram of the underlying clean speech signal. Using the reasoning described in Section 3.3 we can

assume that all elements in the noisy spectrogram that have a relatively high local SNR are good approxi-

mations to the corresponding values in the clean spectrogram. The elements with low SNR, on the other

hand, merely give us an upper bound on the value of the clean spectrogram. Considering all elements

whose local SNR is greater than a threshold  as having a high SNR, our assumption gives us

(7.10)

where  is the local SNR of . The noisy spectrogram  can therefore be separated into

two components,  and , where  consists of all the regions of the noisy spectrogram  whose SNR

lies above the threshold, and  consists of all the regions of  whose SNR lies at, or below the threshold.

The components of  are assumed to be the reliable regions of the spectrogram, since they are assumed

to be good approximations of the corresponding regions in the true spectrogram , which we denote as

. The components of  are the unreliable regions of , since their values cannot be used to approxi-

mate the corresponding regions of , which we denote by . We refer to  and  as the reliable com-

ponents of  and the unreliable components of  respectively. Together they represent  completely. The

relation between  and , and the corresponding regions of ,  and , is given by

(7.11)

Note that the only difference between this situation and that described in Section 3.3 is that instead of

erasing the regions whose local SNR lies below a threshold, we are marking them as “unreliable”. We use

the same terminology as that used for the case of missing components and refer to the patterns of regions

marked unreliable in the spectrogram as deletion patterns, or spectrographic masks. 

As given by Equation (4.3), restated below for clarity, optimal speech recognition of an utterance is per-
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formed by evaluating 

(7.12)

where  is the estimated sequence of words in the utterance, and  is any arbitrary sequence of words.

Ideally, we would want to perform recognition with the true spectrogram of the speech , i.e. with the true

values of  and . However, we have access only to , the spectrogram of the noisy observations

(speech). In Equation (7.11) the value of  can be assumed to be known and equal to . The value of

 however is uncertain, and only its upper bound  is known. 

The similarity between Equation (7.11) and Equation (7.1) is apparent. If we were to attempt to recog-

nize speech based directly on the relation in Equation (7.11), the problem would be that of classification

with unreliable data. This would be analogous to classification with incomplete data, except that we now

have the additional constraint imposed by the upper bound on the unreliable components. Alternatively, we

could attempt to estimate the value of , based on the value of the reliable components , constrained

to the upper bound , and use this estimated value for recognition. This would be analogous to the spec-

trogram reconstruction methods described in Chapter 5, except that we would be inferring the true value of

unreliable elements, rather than inferring the value of missing elements. We refer to these methods also as

unreliable spectrogram reconstruction methods, or simply as spectrogram reconstruction methods.

7.4 Classifier modification methods: Recognizing speech directly with unreli-

able spectrograms

Recognition with unreliable spectrograms is similar to recognition with incomplete spectrograms. The

only difference is that the upper bound on the value of the unknown elements is known.

Conventional classifier-modification methods of classification with incomplete spectrograms, i.e. class-

conditional imputation, and marginalization, can be modified to perform classification with unreliable

spectrograms. Cooke et. al. [Cooke 1999], and Josifovski et. al. [Josifovski 1999] report in detail on class-

conditional imputation and marginalization with unreliable spectrograms. We describe some of these

details in the following sections. More can be found in [Cooke 1999] and [Josifovski 1999].
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7.4.1 Class-conditional imputation of unreliable regions in spectrograms

Class-conditional imputation of unreliable regions of spectrograms estimates the value of  condi-

tioned on the upper bound  and uses this estimate for recognition. The bounded MAP estimation proce-

dure is used for the estimation. As in the case of class-conditional imputation of missing regions (Section

4.2), a separate estimate of  is specific to the word hypothesis being considered. Recognition is per-

formed as 

(7.13)

where  is the bounded MAP estimate of the unreliable components ,:

(7.14)

where  are the values of the unreliable regions of the noisy spectrogram . 

For HMM-based speech recognition systems where the best state sequence associated with the word

sequence is estimated along with the word sequence, Equation (7.13) gets modified to

(7.15)

where  represents any valid state sequence that can be generated by the HMM for

. , the estimate for , is given by

(7.16)

We refer to the individual spectral vectors of the true spectrogram  as , and separate the reliable

and unreliable components of  into  and , respectively. Similarly, we refer to the individ-

ual spectral vectors of the noisy spectrogram  as  and separate the reliable and unreliable compo-

nents of  into  and  respectively. The estimate of  can now be expressed in terms of

the estimates of the individual terms  as
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Ŵ maxW s, P Sr Ŝu W s, , s W,,( )P s W( )P W( ){ }arg=

s s1 s2 s3 … sN, , , ,[ ]=
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(7.17)

where  refers to the estimates of  when the word hypothesis being considered is  and

the state sequence being considered is . Since the HMM assumes that the individual vectors of the spec-

trogram are independent, Equation (7.16) leads to

(7.18)

The right hand side of Equation (7.18) is dependent only on , and is independent of both the word

sequence  and the complete state sequence . The implication of this is that bounded MAP estimates of

the unreliable components of a spectral vector are estimated separately for each state considered during

recognition, using the distribution of that state. To compute the likelihood of any state for any vector, the

estimates for the unreliable components of that vector obtained using the distribution of that state are used. 

We refer to the procedure of class-conditional marginalization of unreliable elements as bounded class-

conditional imputation. 

7.4.2 Marginalization of unreliable regions in spectrograms

In marginalization, recognition with unreliable spectrograms is performed directly by redefining the

recognizer to use both the reliable components of the spectrogram, and the bounds on the unreliable ele-

ments. Recognition with unreliable spectrograms is performed as

(7.19)

 is derived from  as

(7.20)

The optimal recognition would now be defined over the marginal distributions so obtained as
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(7.21)

For HMM based systems where the best state sequence is also estimated Equation (7.21) becomes

(7.22)

The HMM assumption that individual vectors of the spectrogram are independent leads to

(7.23)

Combining Equation (7.22) and Equation (7.23) we get

(7.24)

Since the terms being multiplied in the right hand side of Equation (7.24) are dependent only on the

particular state , the implication of this equation is that in computing the likelihood of any state for any

spectral vector during recognition,  would be computed instead of

. Recognition would be performed using these modified likelihoods.

We refer to this procedure as bounded marginalization since the missing elements are marginalized

only with the bound.

7.5 Compensating the data: spectrogram reconstruction methods

In this thesis we approach the problem of recognition with unreliable spectrograms as a data compensa-
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tion problem. We estimate the true value of the unreliable regions of spectrograms, conditioned both on the

reliable regions and the bounds on the unreliable regions. Recognition is performed with the reconstructed

spectrogram, or with features derived from it.

The spectrogram reconstruction methods described in Chapter 5 can all be modified to reconstruct

unreliable regions of spectrograms. In the following sub sections we describe geometrical and statistical

methods of estimating the true value of the unreliable regions of spectrograms using bounding information.

We refer to spectrogram reconstruction methods applied to unreliable spectrograms as bounded spec-

trogram reconstruction methods, or simply as spectrogram reconstruction methods for brevity.

7.5.1 Geometric estimation of unreliable spectrographic components

Geometric reconstruction methods estimate missing components of incomplete spectrograms by linear

or non-linear interpolation between, or extrapolation of the values of, the observed components of the

spectrogram (Section 5.2). When applied to the estimation of unreliable regions these methods would have

to be modified to take the upper bound on the unreliable element into account. Let , the th compo-

nent of the th spectral vector be an unreliable component that has to be estimated. Let  be the

upper bound on the value that  can have. The simplest manner in which geometric reconstruction

methods can be used to estimate  would be as

(7.25)

where  is the geometric estimate we would have had for , had it been missing.

 is the estimated value of . Here  could be any of the geometrical recon-

struction methods described in Section 5.2 such as linear interpolation across frequency or linear interpola-

tion across time.

However, when the deletion pattern (i.e. the pattern of unreliable regions in the spectrogram) has been

induced by noise it tends to be related to the energy in the signal. For example, when speech is corrupted

by white noise all low energy regions would be marked as unreliable, while all high energy regions sur-
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rounding these low energy regions would be marked “reliable”. In this situation, when the values of the

low energy regions are estimated by interpolation between the high energy regions, the interpolation-based

estimate almost always lies above the bound (or the observed value of the unreliable regions) and gets

replaced by the unreliable value itself. As a result, estimates of the unreliable regions frequently become

the observed values of the unreliable regions themselves. Figure 7.3 explains this with an example. As a

result, we do not, in general, expect geometrical reconstruction methods to be effective on speech cor-

rupted by noise. 

7.5.2 Cluster-based reconstruction of unreliable regions

Cluster-based reconstruction of missing regions of spectrograms was explained in detail in Section 5.3.

We recapitulate the important points in brief here. In cluster-based reconstruction of missing regions of

spectrograms (Section 5.3) we use the distributions of the spectral vectors to estimate missing regions of

spectrograms. Each spectral vector is assumed to be independent of every other vector. Vectors are

assumed to be segregated into a number of clusters. The distribution of the vectors belonging to each of the

clusters (the distribution of the cluster) is further assumed to be Gaussian. The overall distribution of vec-

tors is given by
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Figure 7.3 Plot showing an example of bounded linear interpolation along time. The dotted region represents the
unreliable region that has to be estimated. The dashed line represents the standard estimate obtained by linear interpo-
lation along time. All the observed unreliable values lie below the linear interpolation based estimate. As a result, the
bounded estimates are simply the original values themselves when the estimate in Equation (7.25) is used.
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(7.26)

where  represents any spectral vector,  is the dimensionality of the vector,  is the total number of

clusters in the distribution (codebook size),  is the a priori probability that  belongs to the th cluster,

and  and  are the mean vector and the covariance matrix respectively of the distribution of vectors

belonging to the th cluster. In order to estimate the missing regions of incomplete spectral vectors, the

cluster that the vector belongs to is identified, and the distribution of that cluster is used to obtain MAP

estimates of missing regions.

Cluster-based reconstruction techniques can be easily modified to estimate unreliable regions of spec-

trograms (rather than missing regions). The modifications needed are somewhat different when the distri-

bution of spectral vectors is represented by a single cluster, from when it is represented by multiple

clusters.

Single cluster based estimation of unreliable regions: In single cluster based reconstruction all spectral

vectors are assumed to belong to one cluster which is represented by a single distribution. The parameters

of this distribution are simply the global mean and covariance of all spectral vectors. Thus the distribution

of spectral vectors is given by 

(7.27)

where  and  are the global mean and covariance of spectral vectors. , the unreliable components

of the th spectral vector , can now be estimated simply as the bounded MAP estimate

(7.28)

where  is the estimate of ,  is the vector of reliable components of , and  is

the upper bound on the value of . The bounded MAP estimate for the unreliable regions can be

obtained using the iterative procedure described in Section 7.2.
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We refer to this procedure as bounded single cluster reconstruction.

Multiple cluster based reconstruction of unreliable regions: In multiple-cluster-based reconstruction,

the distribution of spectral vectors is modeled by multiple clusters. i.e. the codebook size (  in Equation

(7.26)) is greater than 1. Here, reconstruction proceeds in two steps. In the first step the cluster that the vec-

tor belongs to, i.e. the cluster membership of the vector, is identified. In the second step the unreliable

regions of the vector are estimated using the distribution of the cluster. Each of these steps has to take the

upper bound on the value of the unreliable region into consideration. There are two ways of incorporating

this bound into the estimation:

1) Bounded marginalization based estimation

2) Preliminary estimate based estimation

The following subsections describe each of these methods in greater detail.

7.5.2.1 Bounded marginalization based estimation

In bounded marginalization based estimation we estimate the cluster membership of vectors with unre-

liable components as

(7.29)

where  is the estimated cluster membership of ,  and  is the upper bound on the

value of .  has to be obtained by integrating the distribution of cluster as

(7.30)

Equation (7.30) is similar to obtaining the marginal distribution of , except that instead of inte-

grating  from minus infinity to infinity, we only integrate it up to the bound . Hence we refer

to this procedure as bounded cluster marginal reconstruction.

When the cluster distributions are Gaussian, Equation (7.30) cannot generally be solved easily, espe-

cially when  has more than one component (i.e. when more than one component of  is unreli-
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able). However, when the covariance matrix of the Gaussian distribution of the cluster is assumed to be

diagonal (i.e.when the various elements of the spectral vectors within any cluster are assumed to be inde-

pendent of each other) the problem becomes simpler. In this case, if we represent the individual compo-

nents of  as , and the components of  as ,

(7.31)

where  is the number of components in  (i.e. the total number of unreliable components in ).

We now have

(7.32)

where the distribution of each of the components is also a Gaussian given by

(7.33)

where  and  are mean and variance of , given that it belongs to the th cluster. Equation

(7.30) now simply becomes

(7.34)

Each of the integral terms in the right hand side of Equation (7.34) is a form of the error function (erfc)

and can be looked up from standard tables. 

In order to take advantage of the simplicity of Equation (7.34), in multiple-cluster-based representations

it is convenient to model the distributions of the individual clusters as having a diagonal covariance matrix.

Equation (7.34) and Equation (7.29) can now be used to estimate the cluster membership of the spectral

vectors. Once the cluster membership of the vector has been estimated, the distribution of that cluster can

be used to obtain a bounded MAP estimate of , the unreliable components of the vector. 

7.5.2.2 Preliminary estimate based estimation
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In preliminary estimate based estimation, a preliminary estimate  for the unreliable components

of the spectral vector  is obtained by bounded linear interpolation along time as described in Section

7.5.1. The preliminary estimates of the unreliable regions are used along with the reliable components to

identify the cluster membership of .

(7.35)

Once the cluster membership of a vector is identified, the distribution of the cluster is used to obtain

bounded MAP estimates of , the unreliable components of the vector.

7.5.3 Covariance-based reconstruction of unreliable regions

Covariance-based reconstruction methods assume that the sequence of spectral vectors that constitute a

spectrogram are the output of a Gaussian wide-sense stationary (WSS) random process. We recapitulate

the salient points for this model for convenience.

In a WSS process the expected value (the mean) of the th element of a th spectral vector  is

independent of where the vector occurs in the spectrogram. The covariance between the th element of

the th spectral vector and the th element of the th spectral vector ,

 is only dependent on the distance between the two vectors, and not on their actual posi-

tions in the spectrogram.

(7.36)

Since the random process is assumed to be Gaussian, the joint distribution of any subset of components

in a sequence of spectral vectors is Gaussian. This permits us to estimate the values of the unreliable com-

ponents of a spectrogram using the bounded MAP estimation procedure for Gaussian distributions

described in Section 7.2. The unreliable elements in the spectrogram can either be individually estimated,

or jointly estimated. In the following subsections we describe the individual and joint estimation of unreli-

able elements in a spectral vector.
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7.5.3.1 Estimation of individual unreliable elements in a spectrogram

Let  be an unreliable component of the spectrogram with upper bound . Let  be

a vector constructed with all those reliably observed components of the spectrogram that have a relative

covariance greater than or equal to a preset threshold  with . i.e.  is constructed of ele-

ments  as

(7.37)

such that

(7.38)

for all  included in , where  is defined as

(7.39)

 and  have a jointly Gaussian distribution. Thus,  can be estimated as the

bounded MAP estimate

(7.40)

We refer to this procedure as bounded covariance individual reconstruction.

7.5.3.2 Joint estimation of all unreliable elements in a spectral vector

In joint estimation of unreliable elements of vectors, we find a bounded MAP estimate for all the entire

vector  with the upper bound  jointly. We construct a vector  of all elements in the spec-

trogram that have a relative covariance greater than a preset threshold  with at least one of the elements

in . i.e.,  is constructed of elements  as

(7.41)

such that 

(7.42)
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for some , and , such that

(7.43)

 and  have a jointly Gaussian distribution. Therefore a bounded MAP estimate for 

can be obtained as

(7.44)

The unreliable elements in each of the spectral vectors in the spectrogram would be jointly estimated in

this manner to reconstruct the entire spectrogram. We refer to this procedure as bounded covariance joint

reconstruction.

7.6 Experimental results

It is to be expected that recognition performance obtained with the unreliable-spectrogram methods

described in this chapter should be superior to those obtained using the incomplete-spectrogram methods

described in Chapters 4 and 5 since the bounding information present in the noisy observations is used in

the former. In this section we report some experiments that demonstrate the validity of this assumption.

The recognition performance of all the methods described in this chapter were evaluated on speech cor-

rupted by white noise. Continuous HMMs with 2000 tied states, each modeled by a Gaussian density, were

trained on the mel spectrograms of 2880 utterances of clean speech. The test set consisted of 1600 utter-

ances from the RM test set. The utterances in the test set were corrupted by additive white Gaussian noise

(AWGN) and mel spectrograms using 20 mel filters were obtained from the noisy speech. All elements of

the spectrogram with a local SNR below a threshold were marked as unreliable. The observed noisy value

of these regions therefore provided the upper bound on the value of the elements in these regions.

The SNR threshold used for tagging elements are “reliable” or “unreliable” were the optimal thresholds

determined in Section 6.2.1. A threshold of 15 dB was used with marginalization and class-conditional

imputation. For all spectrogram reconstruction methods a threshold of -5 dB was used.

In all experiments it was assumed that the local SNR of every element in the spectrogram was known a

priori. This was possible because the noisy speech was obtained by corrupting clean speech with white

noise. Thus, the spectrograms of the clean speech and the noisy speech were both available, facilitating
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computation of the local SNR in each element of the spectrogram. In a real situation (where only the noisy

utterance is available) the local SNR would not be known. However, here we are only interested in evalu-

ating the performance of the methods described in this chapter in the ideal situation where the local SNRs

are known.

7.6.1 Recognition using log spectra

In this section, we compare the recognition performances of the various methods described in this chap-

ter using a speech recognition system trained with spectrographic features. The recognition system was

trained using the log spectra of clean speech. Only spectral features were used; no difference or double dif-

ference features were used. Recognition was performed either directly with the spectrograms of noisy

speech with some regions tagged as unreliable using classifier-modification methods (marginalization and

class-conditional imputation), or with the reestimated spectrograms (for the spectrogram reconstruction

methods).

Figure 7.4 and Figure 7.5 show the recognition accuracy obtained with classifier-modification methods,

bounded class-conditional imputation and bounded marginalization, as a function of the global SNR of the

noisy speech being recognized and compares them with the performance obtained with regular

(unbounded) class-conditional imputation and marginalization of missing regions in spectrograms (i.e.

when the noisy regions are deleted, rather than being marked unreliable). In all experiments, the local SNR

threshold for marking spectrographic elements as unreliable (or missing) was 15 dB. As can be seen, the

tagging of regions as “unreliable” and using the bounding information present in the noisy observations of

these regions results in large improvements over simply deleting these regions from the spectrogram. In all

cases, recognition accuracies obtained using unreliable spectrogram methods are much greater than those

obtained when recognition is performed with the noisy spectrograms directly (baseline). Similar results

have been reported for these techniques by Cooke et. al. [Cooke 1999]. In fact our experiments show that

bounded class-conditional imputation is a very effective algorithm whereas unbounded class-conditional

imputation is not effective at all. Bounded marginalization, by virtue of being an optimal classification

method, is still more effective than bounded class-conditional imputation.

Figure 7.6 shows the recognition accuracy obtained with spectrograms reconstructed by several

bounded spectrogram reconstruction methods as a function of the global SNR of the noisy speech. Figure
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7.7 shows the recognition accuracies obtained with the corresponding unbounded spectrogram reconstruc-

tion methods. In all experiments the local SNR for tagging elements of the spectrograms as unreliable, or

missing was -5 dB. For the multiple-cluster-based methods a codebook size with 512 clusters was used. 

Geometrical reconstruction methods are not effective. Cluster-based reconstruction methods with pre-

liminary estimate based cluster membership estimation perform poorly and are not shown. However, we

observe that the recognition performance obtained with statistical bounded spectrogram reconstruction

methods is much better than that obtained with unbounded spectrogram reconstruction methods. It is inter-

esting to note that the best recognition is obtained with bounded cluster marginal reconstruction, whereas

unbounded cluster marginal reconstruction is not effective as a noise compensation technique. On the other

hand, the difference between bounded an unbounded reconstruction is not so large either for single cluster
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reconstruction or for covariance-based reconstruction.

Figure 7.8 compares the best classifier-modification method, bounded marginalization, with the best

reconstruction methods, bounded covariance joint reconstruction and bounded cluster marginal reconstruc-

tion. It is interesting to note that the performance achieved by bounded cluster marginal reconstruction,

which is a spectrogram reconstruction method, is superior to the performance obtained with bounded mar-

ginalization, which is an optimal classification procedure. However, it may not be possible to make any

inferences regarding the comparative performance of the two procedures in general since the two proce-

dures vary in many aspects including the SNR thresholds, the fact that marginalization of unreliable ele-

ments is performed directly by the recognizer making the performance subject to the idiosyncrasies of the

particular search algorithm used by the recognizer, etc.

7.6.2 Recognition using cepstra

Recognition experiments with log spectra only give us the relative performance of classifier-modifica-

tion methods and spectrogram reconstruction methods in a perfectly fair setting. However, the true test of

the spectrogram reconstruction methods is the performance of recognition using cepstra derived from the

reconstructed spectrograms, where much better recognition accuracies can be expected. 

The experiments reported in this section were performed on a speech recognition system trained with

cepstra. 13 dimensional cepstra obtained from the 20 dimensional mel-spectral vectors of clean speech

were used to train the recognizer. The reconstructed spectrograms used for recognition in the experiments
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Figure 7.8 Comparison of the recognition performance of the best classifier-modification methods with performance
obtained with the best spectrogram reconstruction methods on speech corrupted by white noise. Baseline recognition
accuracy obtained with noisy speech spectrograms is also shown.
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reported in Section 7.6.1 were transformed to 13 dimensional cepstra for recognition. The setup used was

identical to that used for the log-spectrum based experiments. Continuous HMMs with 2000 tied states,

each modeled by a Gaussian density, were trained. No delta or double-delta features were used.

Figure 7.9 shows the recognition accuracy obtained with cepstra computed from the spectrograms

reconstructed by spectrogram reconstruction methods. For comparison, the recognition accuracy obtained

using bounded marginalization with a log-spectra-based recognizer is also shown (since marginalization

cannot be performed on a cepstra-based recognizer). 

We note that in the case of unreliable spectrogram methods the trends in the recognition accuracy in

log-spectra-based recognition are repeated in cepstra-based recognition. Methods that result in improve-

ment in the log-spectral domain result in improvement in the cepstral domain as well. We further note that

even the simplest statistical reconstruction technique, i.e. single cluster reconstruction, results in better rec-

ognition accuracy overall with cepstra-based recognition than the best classifier-modification method with

log-spectra based recognition. In general, the superior performance due to performing recognition in the

cepstral domain outweighs the advantages of the optimal classification being performed by marginaliza-

tion since the latter has to be performed in the log-spectral domain. 

Among the spectrogram reconstruction methods, geometrical reconstruction is completely ineffective

and is not shown. All statistical reconstruction techniques are effective. However, the relative differences

between some of them are seen to be reduced. The difference between bounded single cluster reconstruc-

tion and bounded covariance joint reconstruction is much lesser when recognition is performed in the cep-
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Figure 7.9 Recognition accuracy obtained with cepstra derived from spectrograms of speech corrupted by white
noise reconstructed by several bounded spectrogram reconstruction methods. The performance obtained with
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stral domain than when it is performed in the log-spectral domain. Our experiments show that bounded

cluster marginal reconstruction remains by far the best method in the cepstral domain as well.

7.6.3 Computational complexity of bounded methods

The application of the bounds increases the computational complexity of all incomplete-spectrogram

methods. Bounded marginalization and bounded cluster marginal reconstruction require the computation

of error functions in order to obtain bounded marginal distributions of observed elements in spectral vec-

tors. This is not required when bounds are not considered. Bounded class-conditional imputation, bounded

covariance joint reconstruction, and bounded cluster marginal reconstruction require the computation of

bounded MAP estimates, which can be an iterative process in the worst case and can involve several com-

parisons against bounds in the best case. As a result, the time taken to perform all of these methods

increases.

Figure 7.10 shows the average time taken to recognize an utterance of speech corrupted to 10 dB by

white noise when marginalization, class-conditional imputation, cluster marginal reconstruction, and cova-

riance joint reconstruction are used along with bounds. Recognition was performed using log spectra in

every case.

Comparison with Figure 6.10 affirms that the usage of bounds does indeed increase the computational

complexity of all the methods shown in the figure. As in the case of unbounded methods, we observe that
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bounded spectrogram reconstruction methods are significantly less expensive than bounded marginaliza-

tion (the best classifier-modification method). Among spectrogram reconstruction methods we note that

bounded cluster marginal reconstruction is significantly more expensive than bounded covariance joint

reconstruction. It was observed that bounded cluster marginal reconstruction took four times longer than

covariance joint reconstruction to reconstruct spectrograms. The time taken to perform recognition with

the reconstructed spectrograms was approximately the same in both cases.

7.7 Improving the reliability of the reliable regions of spectrograms

So far we have tagged regions of the spectrogram as being reliable if the local SNR exceeds a threshold

, and unreliable if it does not. Representing individual elements of the observed noisy spectrogram  as

, and the individual elements of the clean spectrogram  as , we have

(7.45)

where  is the local SNR of . Therefore

(7.46)

All the methods described so far in this chapter have attempted to deal with the uncertainty in the value

of , assuming the value of  was known. The value of  is approximated by . However, the ele-

ments of  are not free of noise. In fact, the SNR of its elements can be as low as the SNR threshold ,

which is -5 dB for the spectrogram reconstruction methods. If the value of  could be better approxi-

mated, the speech recognition performance of unreliable-spectrogram methods can be expected to

improve. This would imply estimating  from the value of , instead of simply approximating  by

.

Several methods have been proposed in the literature that attempt to estimate the spectrum of the under-

lying clean speech from the spectrum of noisy speech [Boll 1979] [Moreno 1996]. While any one of these
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can be used to estimate  from , we use spectral subtraction [Boll 1979] to do so.

Spectral subtraction is a method of canceling additive uncorrelated noise from a noisy speech signal. A

running estimate of the spectrum of the corrupting noise signal is maintained, and subtracted from the

power spectrum of the noisy speech. Spectral subtraction takes advantage of the fact that the transition

from the non-speech regions to speech regions in any utterance is usually abrupt, indicated by a sudden

increase in the energy in the signal. Thus, any quick increase in the energy in the speech signal is assumed

to indicate the onset of speech. All regions deemed to be non-speech can be used to estimate the noise

spectrum.

The initial portion of any utterance is assumed to contain only noise, and the spectrum of this region,

i.e. the average of the first few spectral vectors in a spectrogram, is used to initialize the estimate of the

noise spectrum. Thereafter, the estimate of the th frequency band of the noise spectrum in the th analysis

window is given by 

(7.47)

where  is the th frequency band of the th spectral vector of the noisy speech.  is the noise

update factor.  is the threshold factor used to identify the onset of speech. Once the estimate of the noise

spectrum is known the estimate of the clean speech spectrum is obtained from the noisy spectrum as

(7.48)

 is an oversubtraction factor, and is incorporated in Equation (7.48) to account for the possibility that

the noise spectrum may be underestimated. We use the simpler notation

(7.49)

to indicate that  has been estimated from  using spectral subtraction, as given in Equation

(7.48), and that the spectrogram  has been obtained by performing spectral subtraction on every compo-
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nent of . The relation between the true spectrogram and the noisy spectrogram can now be stated as

(7.50)

The estimate of  and the bound on  given in Equation (7.50) can be used in the unreliable spectro-

gram methods, instead of the relations in Equation (7.46). The only modification would be that the value

associated with the “reliable” regions of the spectrogram would be , instead of . We

refer to unreliable spectrogram methods that use spectral subtraction to estimate the reliable regions of

spectrograms as unreliable-spectrogram methods with spectral subtraction. In particular, we refer to spec-

trogram reconstruction based methods that use spectral subtraction to estimate reliable regions of spectro-

grams as spectrogram reconstruction methods with spectral subtraction. 

Figure 7.11 shows the recognition accuracies obtained with the best classifier-modification method,

bounded marginalization, and with the best spectrogram reconstruction methods, bounded covariance joint

reconstruction and bounded cluster marginal reconstruction, when spectral subtraction was used to

improve the estimate of . The recognition accuracy obtained when recognition is performed directly

with spectrally-subtracted speech (and no unreliable spectrogram methods are applied) is also shown. Fig-

ure 7.12 shows the absolute improvement in recognition accuracy in each of these methods due to using
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between the recognition accuracy shown in Figure 7.11
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the spectrally-subtracted estimate of  instead of approximating it with .

Improving the estimate of  by spectral subtraction is seen to result in significant improvement in the

recognition accuracy obtained with all the methods. In all cases, recognition accuracy obtained with unre-

liable spectrogram methods was far greater than the baseline recognition accuracy (obtained by performing

recognition directly on noisy spectrograms), as well as that obtained with spectrally-subtracted speech.

Figure 7.13 shows the recognition accuracy obtained when spectrograms reconstructed by spectrogram

reconstruction methods with spectral subtraction, i.e bounded cluster marginal reconstruction and bounded

covariance joint reconstruction, were transformed into cepstra and recognition was performed using a cep-

stra-based recognizer. The baseline recognition accuracy obtained when recognition is performed directly

with cepstra of noisy speech and the recognition accuracy obtained with cepstra of spectral subtracted

speech are also shown for comparison. Comparison with Figure 7.9 shows that large improvements in per-

formance are obtained by preliminary spectral subtraction of reliable regions of spectrograms, even when

recognition is performed in the cepstral domain.

Overall, we see from Figure 7.13 that very large improvements in recognition accuracy are achievable

when bounded spectrogram reconstruction methods with spectral subtraction are used to compensate for

corrupting noise, when the local SNR of elements of the spectrogram are known a priori. 
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Figure 7.13 Recognition accuracy obtained with cepstra derived from spectrograms reconstructed with the combina-
tion of bounded spectrogram reconstruction methods and spectral subtraction. Recognition performance with cepstra
derived directly from spectrally-subtracted speech and baseline recognition accuracy with cepstra derived from noisy
speech are also shown.
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7.8 Recognition of speech corrupted with non-stationary noises

We had mentioned at the outset in Chapter 1 that one of the important goals of attempting to compen-

sate for noise with missing-feature methods was to be able to compensate for non-stationary noises. How-

ever, in all the experiments reported with incomplete-spectrogram and unreliable-spectrogram methods so

far in this thesis we have used stationary white noise as the corrupting signal. It is therefore important to

determine the extent to which unreliable spectrogram methods are effective on speech corrupted by non-

stationary noise.

Figure 7.14 shows the recognition accuracy obtained when bounded spectrogram reconstruction meth-

ods (with spectral subtraction) were applied to speech corrupted with music. The local SNR of each ele-

ment of the spectrogram was assumed to be known. Recognition was performed in the cepstral domain

with a recognizer trained on cepstra. The baseline recognition accuracy obtained when recognition was

performed directly with the music-corrupted speech, as well as the recognition accuracy obtained with

spectrally-subtracted speech are shown.

We note that unreliable spectrogram methods are highly effective on speech corrupted by music as well,

when the local SNR of the elements in the spectrogram are known. For example, the recognition accuracy

obtained with spectrograms reconstructed by cluster-based reconstruction when the global SNR of the

noisy speech is 5 dB is very close to that obtained with clean, uncorrupted speech. Note that spectral sub-

traction is not effective here, due to the non-stationary nature of music. Spectral subtraction and other con-

ventional techniques are only effective when the corrupting signal is stationary or slowly varying.
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Figure 7.14 Recognition accuracy obtained when bounded spectrogram reconstruction methods are applied to speech
corrupted by music to several SNRS. Baseline recognition accuracy, and recognition accuracy obtained with spectral
subtraction alone are also shown. Recognition was performed in the cepstral domain in all cases.
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7.9 Summary and conclusions

We have seen in this chapter that by tagging noisy regions of spectrograms as “unreliable” instead of

deleting them altogether, and by appropriately modifying incomplete-spectrogram methods to consider the

upper bound on the value of the spectrogram provided by the noisy observations large improvements can

be made in recognition accuracy. The performance of both classifier-modification methods, and the spec-

trogram reconstruction methods proposed in this thesis is observed to improve significantly with this

approach. 

The best recognition performance obtained with the spectrogram reconstruction methods proposed in

this thesis are seen to be comparable with, or better than, the performance obtained with the best current

classifier-modification method, bounded marginalization, even when recognition is performed using log

spectra. When recognition is performed using cepstra derived from reconstructed spectrograms, the perfor-

mance obtained with the simplest spectrogram reconstruction method, bounded single cluster reconstruc-

tion, is superior to that obtained with bounded marginalization on log spectra. Large improvements are

obtained with spectrogram reconstruction methods on speech corrupted by music as well, when the local

SNR of the elements of the spectrogram are known. The performance of these methods appears to be inde-

pendent of the kind of corrupting noise, once the local SNRs are known.

It is interesting to observe that the improvement in the performance of marginalization and cluster mar-

ginal reconstruction due to the usage of the upper bound on unreliable elements is far greater than the

improvement in either single cluster reconstruction or covariance-based reconstruction methods. In fact,

bounded marginalization based reconstruction is the most effective of all spectrogram reconstruction meth-

ods, whereas all cluster-based methods were ineffective when bounds were not used. We observe that both,

marginalization and cluster marginal reconstruction involve classification of some kind. In marginaliza-

tion, the optimal state sequence representing the utterance is identified. In cluster marginal reconstruction

the cluster that the clean spectral vector belongs to is identified. It may therefore be inferred that the incor-

poration of the upper bound on the value of the unreliable elements improves classification performance

far more than it improves the estimation of their values. Thus, all methods which involved classification

were seen to improve much more than methods that did not involve classification of any kind.

As in the case of incomplete spectrograms, bounded geometrical reconstruction methods were com-
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pletely ineffective in compensating for noise. It is clear that noisy regions of spectrograms cannot simply

be estimated by simple interpolation or extrapolation of the reliable portions of the spectrogram. The prior

statistical information used by the statistical reconstruction methods is essential for effective reconstruc-

tion. Among statistical reconstruction methods, bounded cluster marginal reconstruction was seen to be

significantly superior to bounded covariance-based reconstruction methods. However, the latter are com-

putationally less expensive than the former.

Recognition accuracy can be further improved by estimating the true value of reliable regions, instead

of simply approximating them with the less noisy portions of the noisy spectrogram. Overall, large

improvements in recognition performance are achievable on noise corrupted speech by using the unreliable

spectrogram methods (in combination with spectral subtraction). For example, the recognition accuracy of

speech corrupted by music to 0 dB goes up from less than 10% when the noisy speech is used directly for

recognition to over 60% when cluster-based reconstruction of unreliable regions is performed.

However, the results reported in this chapter are all subject to the condition that the spectrographic

masks that distinguish the reliable regions of the spectrogram from the unreliable ones are known per-

fectly. These masks were obtained using perfect knowledge of the local SNR of each of the elements in the

spectrogram. As such, they only establish an upper bound on what is achieveable using missing feature

methods. It is therefore more correct to say that large improvements in recognition accuracy are potentially

achievable on noise corrupted speech by using unreliable-spectrogram methods.

In a real situation, the local SNR of the spectrographic elements would not be known and the spectro-

graphic masks would have to be estimated. Needless to say, any procedure that estimates spectrographic

masks is likely to make errors, and therefore the performance of unreliable spectrogram methods can be

expected to be worse when estimated masks are used, than when masks are obtained with perfect knowl-

edge of the local SNR of the elements of the spectrogram. Needless also to say, unreliable-spectrogram

methods that do not function with perfect knowledge of the local SNR and perfect knowledge of deletion

patterns cannot be expected to perform with estimated deletion patterns. Thus, geometrical reconstruction

methods cannot, in general, be expected to perform well on noise corrupted speech. We do not consider

them any further in this thesis.

Estimation of deletion patterns can be a very complicated task. At the greatest detail, this would entail
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estimating the local SNR of each element of every spectral vector in the spectrogram. At the coarsest level,

we only need to distinguish between the components of the spectrogram that are heavily corrupted and

those that are relatively less corrupted. i.e. we only need to be able to decide whether the local SNR in the

elements lies above the threshold  or below it. Even this latter estimation can be very difficult.

In the next chapter we discuss the estimation of deletion patterns, and the performance of unreliable

spectrogram methods with estimated deletion patterns.

T
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Chapter 8
Estimating the locations of corrupt regions in spectrograms

8.1 Introduction

In the preceding chapters we have described several techniques that improve the recognition perfor-

mance on noisy utterances of speech by reconstructing the noisy regions of their spectrograms. We have

demonstrated that considerable improvements in recognition accuracy can be obtained with these methods,

even when the corrupting noise is non-stationary. However, in all the experiments reported thus far, we

have assumed that the spectrographic masks that distinguish the reliable regions of the spectrogram from

the unreliable regions were known a priori. In any real situation the true spectrographic masks would not

be available. For any solution based on missing-feature methods to be complete it is therefore also neces-

sary to estimate the spectrographic masks themselves. 

We refer to the true spectrographic masks as oracle masks, and estimated spectrographic masks as esti-

mated masks, for brevity.

The estimation of spectrographic masks only involves the estimation of very simple, binary information

about every element in the spectrogram - we only need to determine whether any element is noisy or not.

However, even this simple binary assessment can be a very difficult task. This is especially so when the

noise corrupting the speech is non stationary. Other researchers working on missing-feature-based

approaches to noise compensation have all attempted to estimate these masks based on running estimates

of the spectrum of the noise [Cooke 1997][Cooke 1999], and have reported varying degrees of success

with these methods, depending on the kind of noise being considered. Another popular method of identify-

ing spectrographic masks is based on the hypothesis that the energy of highly noisy elements of spectral

vectors is significantly different from those with low noise [Hirsch 1995]. The histogram of spectral ele-

ments in any frequency band over a given time window would therefore exhibit two peaks, one each repre-

senting the noisy elements and the clean elements respectively. Spectrographic masks are derived based on

estimates of the noise spectra obtained as the difference in the positions of the two peaks [Cooke 1999]. No

other method has been employed to identify masks to the best of our knowledge.

In this chapter we address the problem of automatically estimating the spectrographic masks for noisy
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speech. We first analyze the effect of errors in the spectrographic masks. Thereafter we discuss three meth-

ods of estimating spectral masks. In the first method we use a running estimate of the spectrum of the cor-

rupting noise to identify low SNR regions on the spectrograms. This is essentially the method described in

[Cooke 1997] and [Cooke 1999]. Since the running noise estimate is obtained using the noise estimation

method in spectral subtraction, we refer to this method as spectral-subtraction-based mask estimation. In

the second method we use the noise spectrum estimate obtained by the most successful noise compensation

technique in our repertoire, the vector Taylor series algorithm or VTS, to estimate spectral masks. We refer

to this method as VTS-based mask estimation. In the third method we train a simple two class classifier to

identify noisy regions of the spectrograms, and thereby the spectrographic masks. We refer to this method

as classifier-based mask estimation. Finally we describe experimental results with spectrographic masks so

obtained.

In the rest of this chapter we restrict our discussion to only two of the spectrogram reconstruction meth-

ods described so far: 

1) Bounded covariance joint reconstruction

2) Bounded cluster marginal reconstruction

All analysis and experimentation has been done with these methods only. However, the results obtained

are generalizable to other methods as well. Results with classifier-modification methods are not shown

since, in general, baseline recognition accuracy with the cepstra of noisy speech is not significantly worse

than the recognition accuracy obtained with bounded marginalization in the log-spectral domain, even with

oracle masks.

In all the experiments reported in this chapter the RM database, and the CMU Sphinx-III recognition

system was used as in other chapters. All recognition experiments were performed using cepstra derived

from reconstructed log spectra.

8.2 The effect of errors in mask estimation

The ability of missing feature methods to compensate for noise depends critically on the accuracy of the

spectrographic masks used. Errors in the spectrographic mask can cause the recognition performance of

missing feature methods to degrade significantly. 
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Errors in spectrographic masks can be one of two kinds: reliable elements of the spectrogram may be

declared unreliable, or unreliable elements may be tagged as being reliable. We refer to the first type of

error as a false alarm. We refer to the second type of error as a miss. The effect of false alarms is that clean

elements of the spectrogram are tagged as being noisy and are therefore reconstructed. The effect of misses

is that noisy elements of the spectrogram are treated as being reliable, and are used directly for recognition.

The effect of both type of errors is not the same. In the case of misses the worst case would be when all

noisy elements are tagged as being clean. The recognition performance in this case (assuming the reliable

regions of the spectrogram have all been tagged correctly) is simply the baseline recognition performance

that is obtained with noisy speech, since the spectrograms simply remain unprocessed. The worst case sce-

nario for false alarms, however, is much worse. Here, all reliable regions of the spectrogram would get

tagged as being unreliable. Therefore, assuming that all unreliable regions of the spectrogram are correctly

tagged, the spectrogram would be assumed to have no reliable elements at all. As a result neither recogni-

tion with, nor reconstruction of, the spectrograms would be possible.

The effect of false alarms and misses on the performance of missing feature methods is illustrated in

Figure 8.1 and Figure 8.2. For the plot in Figure 8.1 random false alarms were introduced into the spectro-

graphic mask of speech corrupted to 15 dB by white noise. No misses were introduced. The figure shows

how the recognition performance of the unreliable-spectrogram methods degrades as the fraction of clean

elements wrongly identified as being unreliable increases. Figure 8.2 similarly shows how their perfor-

mance degrades when random misses were introduced into spectrographic masks. We observe that recog-
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Figure 8.1 Recognition accuracy with cepstra derived
from reconstructed spectrograms, as a function of the
fraction of reliable elements in the spectrogram that
were erroneously tagged as being unreliable

Figure 8.2 Recognition accuracy with cepstra derived
from reconstructed spectrograms, as a function of the
fraction of unreliable elements in the spectrogram that
were erroneously tagged as being reliable
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nition performance degrades very quickly with increasing fraction of false alarms. However, the sensitivity

of all missing-feature methods to misses is not so much, and the performance degrades much more slowly

as the fraction of noisy elements identified as being reliable increases.

We can infer from Figures 8.1 and 8.2 that it is critical for any algorithm that estimates the spectro-

graphic masks of noisy speech to make minimal false alarm errors. Misses, on the other hand, are not so

critical.

8.3 Estimating spectrographic masks using spectral subtraction

As mentioned in Section 7.7, spectral subtraction is a procedure that attempts to cancel additive uncor-

related noise from a noisy speech signal. To do this, a running estimate of the spectrum of the corrupting

noise signal is maintained as follows: the initial portion of any utterance is assumed to contain only noise,

and the spectrum of this region, i.e. the first few spectral vectors in a spectrogram, are used to initialize the

estimate of the noise spectrum. Thereafter any sudden increase in the energy in the noisy speech signal is

assumed to indicate the onset of speech and regions in the speech whose energy falls lies below a given

threshold are assumed to consist only of noise. The estimate of the th frequency band of the noise spec-

trum in the th analysis window is given by 

(8.1)

The noise estimate so obtained can be used to estimate the SNR of spectrographic elements. If 

is the observed value of the th frequency band of the th spectral vector in the noisy spectrogram, the esti-

mate of the SNR of  would be given by

(8.2)

Spectrographic masks are estimated simply by tagging all elements of the spectrogram whose estimated

SNR is lower than a threshold . Variants of this method of estimating spectrographic masks have been

reported in [Cooke 1997][Cooke 1999].
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The estimate SNR given by Equation (8.2), by nature of being an estimate, is not identical to the true

value of the SNR. Any spectrographic mask derived on the basis of these estimates is likely to be errone-

ous as well. The degree of error, as measured by the fraction of misses and false alarms in the estimated

spectrogram, depends on the value of  used. It would therefore have to be carefully chosen.

Figure 8.3 plots the relation between the percentage of reliable elements correctly identified and the

false alarm percentage for various values of 1 for speech corrupted with white noise to 15 dB and 25 dB.

The knee of the curve is seen to be at T = 2.5 dB for both cases. At higher thresholds the fraction of false

alarms increases greatly. At lower thresholds the misses increase.  was therefore chosen to be 2.5 dB:

any element  whose local estimated SNR, , was below 2.5 dB was assumed to be unre-

liable. Note that this threshold is different from the optimal deletion threshold for obtaining spectrographic

masks when the true SNR of the spectrographic elements was known (Section 6.2.1).

8.3.1 Experimental results with spectral-subtraction-based mask estimation

In order to evaluate spectral-subtraction-based mask estimation experiments were run on speech cor-

rupted by white noise and music to several different SNRs. Spectral-subtraction-based masks were esti-

mated and bounded spectrogram reconstruction methods applied to these masks.

1. These were obtained by comparing the estimated spectrographic mask with the true spectrographic mask 
for the noisy speech.
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Figure 8.4 shows an example of the estimated spectrographic mask for an utterance corrupted to 10 dB

by white noise. Figure 8.5 shows the oracle (true) spectrographic mask for the same utterance. Visual com-

parison of the two figures shows that the estimated mask resembles the oracle mask, at least at a gross

level. Figure 8.6 shows the recognition accuracy obtained with unreliable spectrogram methods on speech

corrupted by white noise using estimated masks. Figure 8.7 shows the recognition accuracies obtained on

the same utterances when oracle masks were used with these missing feature methods. We note that the

recognition accuracy obtained with the estimated masks is much greater than the baseline recognition

accuracy obtained with the cepstra of noisy speech. This is indicative that spectral-subtraction-based mask
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Figure 8.4 Spectrographic mask estimated using spec-
tral-subtraction-based estimation for an utterance of
speech corrupted to 10 dB by white noise.

Figure 8.5 Oracle spectrographic mask for the same
utterance.

Figure 8.6 Recognition accuracy obtained by applying
incomplete spectrogram methods with spectrographic
masks estimated by spectral-subtraction-based estima-
tion, for speech corrupted by white noise. Baseline rec-
ognition accuracy for the noisy speech, and the
performance obtained when only spectral subtraction is
used to compensate for the noise are also shown.

Figure 8.7 Recognition accuracy obtained when incom-
plete spectrogram methods are used with oracle masks
to compensate for additive white noise.
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estimation can be effective on speech corrupted by white noise. In general, it can be expected that spectral-

subtraction-based estimation of spectrographic masks will be effective in situations where spectral subtrac-

tion itself is effective. Spectral subtraction is known to be effective when the noise corrupting the speech is

stationary or slowly varying. It can therefore be expected that for such noises spectrographic masks can be

estimated and missing feature methods can effectively be used to compensate for the effect of the noise on

speech recognition systems.

However, Figures 8.6 and 8.7 also show that the recognition accuracy obtained with the estimated

masks is much poorer than that obtained with oracle masks, especially at low SNRs. There is, therefore,

considerable scope for improvement in the masks even when the corrupting noise is white.

Figures 8.8 and 8.9 show the estimated mask and the oracle mask for an utterance of speech that has

been corrupted to 10 dB by music. It is clear from these figures that spectral subtraction is completely

unable to estimate the mask when the corrupting noise is music. Figure 8.10 shows the recognition accu-

racy obtained with spectrogram reconstruction methods on speech corrupted by music, when estimated

masks are used. Figure 8.11 shows the recognition performance obtained on the same utterances when ora-

cle masks are used. Spectrogram reconstruction methods are completely ineffective at compensating for

music when the estimated spectrographic masks are used. Once again, it is clear from these figures that

spectral subtraction is completely ineffective as a mask estimation method when the corrupting signal is

music.

8.4 Estimating spectrographic masks with VTS

Vector Taylor Series (VTS) is a noise compensation algorithm that attempts to reduce the effect of lin-

ear filtering and additive noise on the log-spectral vectors of noisy speech [Moreno 1996]. If  repre-

sents the th log spectral vector for the utterance that has been corrupted by linear filtering and additive

noise, and  is the value that would have been observed had the speech not been corrupted in any man-

ner, then it can be shown that the relation between the two is given by [Acero 1991]:

(8.3)

where  is the logarithm of the squared magnitude of the spectrum of the impulse response of the linear
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filter, and  is the log spectrum of the noise. It is assumed that the noise is stationary, and that differences

in the spectrum of the noise corrupting individual spectral vectors (each representing one analysis window

of speech) are attributable only to differences in realization of the same random process (i.e. estimation

error). It is further assumed that the distribution of the log spectrum of the noise in the various analysis

windows is Gaussian, with a mean , which also represents the estimate of the true log spectrum of the

noise, and variance .

The distribution of the log spectra of clean speech is assumed to be a Gaussian mixture. The set of

parameters of the Gaussian mixture, , are learned from a training corpus of clean speech. The problem
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Figure 8.8 Spectrographic mask estimated using spec-
tral-subtraction-based estimation for an utterance of
speech corrupted to 10 dB by music.

Figure 8.9 Oracle spectrographic mask for the same
utterance.

Figure 8.10 Recognition accuracy obtained with spec-
trographic masks estimated by spectral-subtraction-
based estimation, for speech corrupted by music. Base-
line recognition accuracy for the corrupted speech is
also shown.

Figure 8.11 Recognition accuracy obtained when
incomplete spectrogram methods are used with oracle
masks to compensate for music.
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addressed in VTS, within the framework of this formulation, is the maximum likelihood estimation of the

channel parameter , and the mean and the variance of the noise,  and . Representing the set of log

spectral vectors of the noisy utterance as , the estimate is given by

(8.4)

Once , , and  have been estimated  is estimated from  using an MMSE estimator.

The mean value  of the noise log spectrum is also the estimate of the true log spectrum of the noise.

It can be used to estimate the local SNR of the elements of the spectrogram of the noisy speech. If 

is the value of the th frequency band of the th spectral vector in the noisy spectrogram, and we represent

the th frequency component of  by , the estimate of the SNR of  would be given by

(8.5)

Spectrographic masks are computed based on the estimated SNR values by tagging all elements in the

spectrogram for which  lies below a threshold  as unreliable. Figure 8.12 plots the percentage

of reliable elements correctly identified against the false-alarm percentage for various values of  for

speech corrupted with white noise to 15 dB and 25 dB. The knee of the curves is seen to be between 5 dB
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and 0 dB. The threshold  was therefore set to be at 2.5 dB

8.4.1 Experimental results with VTS-based mask estimation

Figure 8.13 shows an example of the spectrographic mask estimated by VTS-based mask estimation for

an utterance corrupted to 10 dB by white noise. We observe that the spectrographic mask obtained using

VTS-based estimation is a very good approximation to the oracle mask shown in Figure 8.14. Figure 8.15

shows the recognition accuracy obtained with unreliable-spectrogram methods using masks estimated by

VTS-based estimation. We observe that VTS-based mask estimation is also very effective in terms of the

recognition accuracy obtained when these masks are used with unreliable spectrogram methods. Large
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Figure 8.13 Spectrographic mask estimated using VTS-
based estimation for an utterance of speech corrupted to
10 dB by white noise.

Figure 8.14 Oracle spectrographic mask for the same
utterance.

Figure 8.15 Recognition accuracy obtained with spec-
trographic masks estimated by VTS-based estimation,
for speech corrupted by white noise. Baseline recogni-
tion accuracy for the corrupted speech is also shown.

Figure 8.16 Recognition accuracy obtained when
incomplete spectrogram methods are used with oracle
masks to compensate for white noise.
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improvements in recognition accuracy over baseline are achieved at all SNRs. Comparison with Figure 8.6

also shows that the recognition accuracy obtained using VTS-based spectrographic mask estimates is sig-

nificantly greater than that obtained with spectral-subtraction-based mask estimates. The difference

between the performance obtained with oracle masks and the performance with estimated masks is much

smaller when the masks are estimated using VTS-based estimation.

Figure 8.17 and Figure 8.18 show the mask obtained with VTS-based estimation and the oracle mask

respectively for an utterance of speech that has been corrupted to 10 dB by music. As in the case of spec-

tral-subtraction-based mask estimation, the mask obtained by VTS-based estimation is a very poor approx-

imation to the oracle mask. Figure 8.19 shows the recognition accuracy obtained on speech corrupted with
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Figure 8.17 Spectrographic mask estimated using VTS-
based estimation for an utterance of speech corrupted to
10 dB by music.

Figure 8.18 Oracle spectrographic mask for the same
utterance.

Figure 8.19 Recognition accuracy obtained with spec-
trographic masks estimated by VTS-based estimation,
for speech corrupted by music. Baseline recognition
accuracy for the corrupted speech is also shown

Figure 8.20 Recognition accuracy obtained when
incomplete spectrogram methods are used with oracle
masks to compensate for music.
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music, when masks estimated using VTS are used in conjunction with spectrogram reconstruction meth-

ods. We observe that the performance obtained with unreliable spectrogram methods is very poor, fre-

quently resulting in recognition accuracies lower than the baseline. VTS-based estimation is ineffective

when the corrupting noise is music.

8.5 Estimating spectrographic masks using a classifier

Spectrographic masks essentially separate the elements of the spectrogram out into two classes - the

class of unreliable elements, and the class of reliable elements. Each element of the spectrogram belongs to

one of these two classes. In classifier-based estimation of spectrographic masks we therefore treat the prob-

lem of estimating spectrographic masks as one of classification.

Each element of the spectrogram is represented by a vector of features for the purpose of this classifica-

tion. We refer to this vector as the classification vector. In our experiments the classification vector

 representing each element  of the spectrogram was constructed as

(8.6)

While there are other ways in which the classification vector representing any element of the spectro-

gram can be constructed, it is expected that such a vector would capture information about the variation of

the elements in the spectrogram that would be useful for classification.

We use a simple bayesian classifier to classify each element of the spectrogram as belonging either to

the reliable or the unreliable class. Separate classifiers are used for each frequency component in the spec-

tral vector. Individual elements of the spectrogram are assumed to be uncorrelated to each other for the

purpose of classification and classification of the individual elements of the spectrogram is done indepen-

dently of other elements in the spectrogram. If we represent the parameters of the distribution of reliable

elements in the th frequency band of the spectral vectors in the spectrograms as  and the parameters

of the distribution of unreliable elements as , the value  of the spectrographic mask in the th

frequency band for the th spectral vector is given by

Y t k,( ) Y t k,( )

Y t k,( )

Y t k,( )
Y t 1 k,+( ) Y t 1 k,–( )–
Y t k 1+,( ) Y t k 1–,( )–

Y t 1+ k 1+,( ) Y t 1– k 1–,( )–
Y t 1– k 1+,( ) Y t 1+ k 1–,( )–

=

k Φr k,

Φu k, M t k,( ) k

t
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(8.7)

where  and  are the a priori probabilities of the reliable and unreliable class, respectively. Ide-

ally, the a priori probabilities of the classes would be specific to the global SNR of the speech - at low

SNRs the fraction of elements that are noise corrupted (and thereby unreliable) can be expected to be

higher than at high SNRs. However, since the global SNR of the utterance being recognized is not known

beforehand in most real situations, the same values of  and  have to be used at all SNRs. 

Figure 8.21 plots percentage of reliable elements correctly identified against the false alarm percentage

for various values of  for speech corrupted with white noise to 5 dB, 15 dB and 25 dB. We observe

that the best value of , given by the knee in the curve is between 0.7 and 0.8 in all cases with some

variation.  was therefore chosen to be 0.8.

In general, since misses are less expensive (in terms of their effect on recognition accuracy) than false

alarms, it is better to choose a high a priori probability for the class of reliable elements, .

M t k,( )
reliable      if P r( )P Y t k,( ) Φr k,( ) P u( )P Y t k,( ) Φu k,( )≥

 
unreliable  if P u( )P Y t k,( ) Φu k,( ) P r( )P Y t k,( ) Φr k,( )>
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8.5.1 Experimental results with classifier-based mask estimation

Classifier-based mask estimation was evaluated on both speech corrupted by white noise, and speech

corrupted by music. Ideally, the mask estimation procedure would be independent of the type of noise cor-

rupting the speech and the same distributions would be used to represent the reliable and unreliable classes

irrespective of the kind of noise corrupting the speech signal. In our experiments, however, it was assumed

that the type of noise corrupting the speech was known a priori. Therefore, for experiments with white

noise the classifier was trained with speech corrupted with white noise. For experiments with music the

classifier was trained with speech corrupted by music.

8.5.1.1 Experiments with white noise

To estimate spectrographic masks for speech corrupted with white noise a single reliable/unreliable

classifier was trained for each frequency band using speech corrupted by white noise to several SNRs

between 0 dB and 30 dB. The spectrographic masks for all utterances being recognized were estimated

using this classifier. We refer to such a classifier as a fair classifier since the global SNR of the speech

being recognized is not assumed to be known beforehand. Figure 8.22 shows an example of a spectro-

graphic mask estimated by classification for an utterance of speech corrupted to 10 dB by white noise. Fig-

ure 8.23 shows the corresponding oracle mask for the utterance. 

Recognition experiments show that spectrograms reconstructed with masks estimated using such a clas-

sifier result in recognition accuracies that are comparable with those obtained with spectral-subtraction-

based mask estimation. Figure 8.24 shows the recognition accuracies obtained using masks estimated by

classifier-based estimation. Comparison with Figure 8.6 (recognition performance with spectral-subtrac-

tion-based masks) shows that the two are very similar.

If the classifier used to estimate spectrographic masks for a noisy utterance is trained using speech cor-

rupted to the same SNR as the speech being recognized, the performance of the mask estimation can be

improved even further. We call such a classifier a cheating classifier since it is assumed that the global

SNR of the speech being recognized is known a priori. Figure 8.25 shows the recognition performance

obtained when spectrographic masks are estimated using such a cheating classifier. Masks obtained with

cheating classifiers are seen to result in much greater accuracies than masks obtained with a fair classifier.
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8.5.1.2 Experiments with music

For experiments with music a single reliable/unreliable classifier was trained for each frequency band

using speech corrupted by music to several SNRs between 0 dB and 30 dB. Spectrographic masks for all

utterances corrupted by music were estimated using these classifiers. Figure 8.26 shows the estimated

spectrographic mask for an utterance of speech corrupted to 10 dB by music. Figure 8.27 shows the recog-

nition accuracy obtained with masks estimated using this classifier. We observe that a small improvement

in recognition accuracy is obtained at all SNRs over baseline using covariance-based estimation. This is an

improvement over the performance using either spectral-subtraction-based estimation or VTS-based esti-
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Figure 8.22 Spectrographic mask estimated using a fair
classifier for an utterance of speech corrupted to 10 dB
by white noise

Figure 8.23 Oracle mask for the same utterance

Figure 8.24 Recognition accuracy on speech corrupted
by white noise, with unreliable spectrogram methods
using masks obtained by a fair classifier

Figure 8.25 Recognition accuracy on speech corrupted
by white noise, with unreliable spectrogram methods
using masks obtained by a cheating classifier
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Figure 8.26  Spectrographic mask estimated for an
utterance corrupted by music to 10 dB using a “fair”
reliable/unreliable classifier.

Figure 8.27 Recognition accuracy on speech corrupted
with music using masks estimated by a fair classifier.

Figure 8.28 Spectrographic mask estimated for the
same utterance as the one above using a cheating classi-
fier.

Figure 8.29 Oracle mask for the same utterance

Figure 8.30 Recognition accuracy on speech corrupted
with music using masks estimated with a cheating clas-
sifier.

Figure 8.31 Recognition accuracy on speech corrupted
with music using oracle masks
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mation, where no improvement was obtained at all. However, even for classifier-based estimation, the rec-

ognition performance obtained with bounded cluster marginal estimation based on the estimated masks is

poorer than the baseline performance. Also, it is doubtful whether the improvement in recognition accu-

racy seen with covariance-based reconstruction is significant and would carry over to other experiments. 

The performance of classifier-based mask estimation for speech corrupted with music can be improved

significantly using a cheating classifier, where the classifier is trained using speech corrupted to the same

global SNR as the speech being recognized. Figure 8.28 shows the mask estimated by a cheating classifier

for the same utterance represented in Figure 8.26 The oracle mask for the utterance is shown in Figure 8.29

It can be seen that the “cheating” mask is a much better approximation for the oracle mask than the one

obtained using a fair classifier, or any of the other methods described earlier. Figure 8.30 shows the recog-

nition performance obtained by applying incomplete spectrogram methods with the cheating masks on

speech corrupted by music. We note that a significant improvement over baseline is obtained using the

cheating masks with both cluster-based reconstruction and covariance-based reconstruction. In fact the

performance obtained with cluster-based reconstruction using the estimated masks is comparable to the

performance obtained with covariance-based reconstruction using oracle masks, shown in Figure 8.31, at

most SNRs.

8.6 Discussion and Conclusions

All of the spectrographic mask estimation methods described in this chapter have been reasonably suc-

cessful at estimating masks for speech corrupted by white noise. The recognition accuracy obtained using

spectrogram reconstruction methods with the estimated spectrographic masks are significantly higher than

the baseline recognition accuracy obtained with cepstra derived directly from the noisy speech. In fact, the

recognition accuracy obtained with cluster marginal reconstruction in conjunction with spectrographic

masks using VTS-based estimation is significantly higher than the performance obtained with VTS, our

best algorithm to compensate for white noise prior to the work reported in this thesis. Figure 8.32 compares

the recognition accuracy obtained using VTS compensation, and cluster marginal reconstruction and cova-

riance joint reconstruction with VTS-based estimation of spectrographic masks, on speech corrupted with

white noise to several SNRs. We observe that the performance obtained with covariance joint reconstruc-

tion is comparable with that obtained with VTS, and that obtained with cluster marginal reconstruction is
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in fact significantly higher than that obtained with VTS compensation, especially at low SNRs.

All of these methods of mask estimation can also be expect to perform equally well on other stationary

or quasi-stationary noises. However, their performance on speech corrupted by music is very poor. The

reason for this poor performance is easy to understand in each of the methods.

The spectral subtraction noise estimate given by Equation (8.1) is based on the assumption that the

underlying speech signal varies much faster than the noise [Hirsch 1995]. Music violates this assumption.

As a result, the noise estimator described by Equation (8.1) is unable to estimate the noise spectrum, and

spectrographic masks based on SNR values computed using these estimates of the noise spectrum are also

erroneous.

VTS makes the explicit assumption that the corrupting noise is stationary. In fact, we only obtain a sin-

gle estimate of the noise spectrum over the entire utterance, and masks are obtained based on this estimate

of the noise spectrum. The procedure can be modified to work with short, sliding windows of speech, to

compute a time varying estimate for the noise spectrum. However, such a procedure would still be con-

strained to tracking only slowly varying noises. It would not be able to track noises whose spectrum varies

as fast as that of music.

Of the three methods, classifier-based methods of estimating spectrographic masks hold the most prom-

ise. They have been seen to perform quite well on speech corrupted by white noise. The performance

obtained on white noise with the “cheating” classifier is, in fact, comparable with that obtained with VTS

compensation. While the performance of unreliable spectrogram methods on speech corrupted by music
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Figure 8.32 Comparison of recognition accuracies obtained on speech corrupted with white noise with VTS compen-
sation, and with incomplete spectrogram methods using spectrographic VTS-based spectrographic masks. The curves 
for VTS and covariance joint reconstruction are almost coincident and therefore indistinguishable.
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using spectrographic masks obtained with “fair” classifiers is not significantly better than the baseline, a

significant improvement in recognition accuracy is obtainable when cheating classifiers are used to obtain

the masks. This is, in fact, the first time that any consistent improvement has been obtained on speech cor-

rupted with music.

We note here that although we refer to the case where the classifier has a priori knowledge of the global

SNR of the speech being recognized as a “cheating” classifier, this may be a misnomer. It is relatively easy

to estimate the global SNR of speech corrupted by white noise to within a few dB of the true SNR [Hirsch

1995]. Thus it is quite possible to perform the classification in two steps, the first identifying the global

SNR of the speech, and the second using the appropriate classifier for the mask estimation.

A more serious problem is the assumption that the kind of noise corrupting the speech signal is known

a priori. Implicit in this assumption is the assumption that the kind of noise corrupting the speech that is

used to train the classifier is identical to the kind found in the test data. While this is possible for many

commonplace noises, such as car noise, or even factory floor noise, the sheer variety of sounds in music

makes it highly unlikely that the precise type of musical sounds used to train the classifier will also be

found in the test utterance.

However, many possible solutions suggest themselves to this problem such as adapting the classifier to

the kind of sounds found in the test utterances. In the following, concluding, chapter of this thesis, we dis-

cuss them among several other issues.
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Chapter 9
Summary and Conclusions

9.1 Summary of major results and contributions

In this thesis we have tried to improve recognition accuracy of noisy speech by developing data com-

pensation techniques based on the missing-feature paradigm. In the missing-feature paradigm noisy

regions of spectrograms are identified and deleted to minimize the effect of corrupting noise, resulting in

incomplete spectrograms with missing regions. Recognition is performed based on the information in the

incomplete spectrograms.

Conventional missing-feature methods modify the recognizer to perform recognition with the incom-

plete spectrograms. The missing regions are not reconstructed. Instead, the manner in which the a posteri-

ori likelihoods of sound classes is computed is modified. While this is theoretically optimal, it introduces

the constraint that recognition has to be performed using the spectrogram itself. It is well known that

speech recognition accuracy is much higher when performed with features such as cepstra which are com-

puted from spectrograms by various transformations. As a result, while conventional missing-feature

methods result in recognition performance that is fairly robust to corruption by noise, the best recognition

performance obtained when using these methods (which is the recognition performance obtained with

spectrograms of clean speech) is frequently inferior to the recognition accuracy obtained with the cepstra

of noisy speech.

What is unique about the work in this thesis is that we reconstruct the missing portions of the spectro-

gram to get complete spectrograms, so that cepstral (or related) features can be derived from them. The

recognition performance obtained using this approach is superior to that obtained using conventional meth-

ods. To the best of our knowledge, this approach has not been tried prior to this thesis.

There are several other advantages to this approach. The reconstruction methods we propose are based

on very simple statistical models of the distribution of spectrograms and are computationally much simpler

than the best current techniques. Also, the recognizer need not be modified in any manner since the entire

noise compensation procedure including the identification of noisy regions of spectrograms, reconstruction

of the regions, and derivation of features is done independently of the recognizer.
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We propose several spectrogram reconstruction methods and focus on the two most effective ones,

cluster marginal reconstruction and covariance joint reconstruction. The proposed spectrogram recon-

struction methods in this thesis were found to be extremely effective at compensating for additive white

noise. The recognition performance obtained was significantly superior to the performance obtained with

our previous best algorithm, VTS. On non-stationary noise it was found that the techniques developed

could be very successfully applied, provided the spectrographic masks identifying the noisy regions of the

spectrograms could be accurately estimated. Thus, the problem of compensating for non-stationary noises

has been reduced to one of reliably estimating spectrographic masks. While the problem of estimating

spectrographic masks has not been completely solved for the case of non-stationary noises, it has been

shown that classifier-based estimation of spectrographic masks is a viable approach to solving this prob-

lem. 

The missing-feature-based noise compensation methods developed in this thesis are the best data-com-

pensation solutions to compensating for white noise developed to date. They are also a partial solution to

the problem of compensating for non-stationary noises, reducing the problem to one of reliably identifying

spectrographic masks. The problem of estimating masks is one of estimating very crude, binary informa-

tion regarding the degree of corruption in the various elements of the spectrogram, and may be much more

tractable than the problem of actually tracking the spectrum of the noise. We therefore consider the meth-

ods developed in this thesis to be a first serious step towards compensating for non-stationary noises as

well.

The complete noise compensation procedure consists of two steps:

1) Identification and deletion of the noisy regions of the spectrograms

2) Reconstruction of the deleted regions

The following sections describe our findings on these issues in reverse order.

9.2 Reconstruction of missing regions

A spectrogram can be visualized as a surface on a two dimensional support, where the two dimensions

are time and frequency. Incomplete spectrograms are surfaces where some regions of the surface are miss-

ing. When the missing elements of the spectrogram are randomly distributed it was found that they could

be effectively reconstructed by simple geometrical methods such as linear and non-linear interpolation. In
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this situation it was found that linear interpolation was generally more effective than non-linear interpola-

tion. Also interpolation along the time axis was much more effective than interpolation along the fre-

quency axis. 

Much better reconstruction was obtained when the missing regions were reconstructed on the basis of

the statistical properties of the elements of spectrograms of clean speech. The cluster-based reconstruction

methods proposed in this thesis assume that spectral vectors are segregated into a number of clusters, each

of which has a Gaussian distribution. The resulting mixture Gaussian distribution is used to reconstruct the

missing regions of spectral vectors. These methods only use the statistical correlations among different ele-

ments of a spectral vector (i.e. correlations across frequency) to reconstruct the missing components of the

vector. Covariance-based reconstruction methods, on the other hand, model the sequence of spectral vec-

tors in the spectrogram as the output of a WSS random process and use the statistical parameters of this

process to reconstruct missing regions of the spectrograms. These methods use pairwise statistical correla-

tions among all elements of the spectrogram (i.e. correlations both across frequency and across time) to

reconstruct missing regions. It was found that covariance-based methods resulted in superior reconstruc-

tion compared to cluster-based methods when random elements of the spectrogram were missing.

When the missing regions of the spectrogram are induced by corrupting noise they do not occur at ran-

dom locations. Instead, they occur in blocks and are related both to the spectrum of the corrupting noise

causing the deletions and to the spectrum of the underlying speech itself. In this situation it was found that

geometrical reconstruction techniques, or any methods that involved reconstruction based only on the

geometry of the spectrogram, were completely ineffective. Recognition accuracies obtained with cepstra

derived from spectrograms where noisy regions were deleted and reconstructed by geometrical methods

were comparable to those obtained with cepstra derived from the noisy spectrogram itself. However recon-

struction based on the statistical properties of the spectrogram was more effective. In particular, recogni-

tion accuracies obtained with cepstra derived from spectrograms reconstructed by covariance-based

reconstruction methods were seen to be significantly superior to the baseline accuracy obtained using the

cepstra of noisy speech. For cluster-based reconstruction, it was found that modeling the distribution of

spectral vectors by a single cluster resulted in comparable or better recognition accuracies than modeling

the distribution by a number of clusters.

When speech is corrupted by additive noise the observed value of any element of the spectrogram is the
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upper bound on the true value of that element since the spectrogram now represents the sum of the energies

in the speech and the noise. Therefore, while it is still appropriate to delete the noisy regions of spectro-

grams, the observed value of these regions are an upper bound on their true value and can be used to condi-

tion the estimates of the missing regions. It was found that when the estimates of missing regions were

conditioned by these upper bounds, they were far superior to those obtained when bounds were not used. In

particular, it was found that recognition accuracies obtained when reconstruction was performed with the

best cluster-based reconstruction method, cluster marginal reconstruction, recognition accuracies on

speech corrupted to 10 dB by noise were comparable to the accuracy obtained on clean speech, provided

the spectrographic masks identifying the noisy regions of the spectrogram to be deleted were accurately

known.

Another factor affecting reconstruction is the fact that even the regions of the spectrogram that have not

been deleted are affected by noise. It was found that reducing the noise level in these elements by spectral

subtraction prior to reconstruction improved reconstruction still further.

9.2.1 Discussion

Analysis of the covariance between the different elements of the spectrogram shows that covariance

across frequency is greater than covariance across time. However, due to the finite length of the spectral

vectors (only 20 elements in our experiments), the number of neighboring elements available to recon-

struct any point is much more restricted when reconstruction is based only on elements within the same

vector, than when it is based on elements of different vectors. As a result, linear interpolation along time

results in better reconstruction than interpolation along frequency. 

Geometrical reconstruction methods base the reconstruction of missing regions only on the regions that

are present in the spectrogram. Since these regions have also been corrupted by noise, even in the best

case, the reconstructed regions would be at least as noisy as the remaining regions. Additionally, when

blocks of elements are missing, simple interpolation-based reconstruction completely ignores the expected

nature of speech spectrograms and the correlations between their elements.

Among statistical reconstruction methods, covariance-based reconstruction methods use the covari-

ances both across time and across frequency to perform reconstruction. Cluster-based methods base the
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reconstruction only on covariances between different elements of the same vector. As a result, covariance

based techniques are able to identify many more observed elements in the spectrogram to base the recon-

struction on and their performance is consequently better than that of cluster-based reconstruction when

the bounds on the values of the missing regions are not considered. Among cluster-based reconstruction

methods, it was found that increasing the number of clusters does not improve reconstruction in any man-

ner. This seems to indicate that the global distribution of spectral vectors is as well modeled by a single

Gaussian as it is by a mixture of Gaussians, for the purpose of reconstruction.

When the observed value of noisy regions is used as an upper bound in the estimation the performance

of multiple cluster based reconstruction improves dramatically. The bounding information improves the

accuracy of identification of the cluster that any vector belongs to, thereby localizing the region in which

the reconstructed vectors can lie very effectively. The identification of clusters is treated as a classification

problem. The bounding information is seen to improve the accuracy of classification much more greatly

than it does the accuracy of the reconstruction, given the distribution of the complete vector. As a result,

the improvement in multiple-cluster-based methods is much greater than that of single-cluster-based recon-

struction or covariance-based reconstruction.

9.2.2 Relative merits of the reconstruction techniques 

Cluster-based reconstruction techniques are seen to be superior to covariance-based reconstruction

when the upper bounds on the values of the missing regions are known. However covariance-based recon-

struction methods still hold some advantages. First, they are seen to be the superior reconstruction method

when no information about the missing regions is available (i.e. no bounding information is available).

Second, they are far less computationally expensive than cluster-based methods. Thus they would be the

methods of preference where computational expense is an issue.

9.3 Identification and deletion of the noisy regions of the spectrograms

Accurate identification of noisy regions of spectrograms, or the spectrographic masks, is crucial for

missing-feature based noise compensation methods to be effective. We have shown that if spectrographic

masks can be accurately identified spectrogram reconstruction methods can be used to compensate very

well for fairly high levels of noise. However, errors in the estimation of the masks can cause the perfor-
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mance of these methods to degrade quickly. 

Conventional methods use spectral-subtraction-based running estimates of the noise spectrum to iden-

tify noisy regions of the spectrogram. We have evaluated three methods of estimating masks: spectral-sub-

traction-based mask estimation, VTS-based mask estimation, and classifier-based mask estimation. Of the

three, spectral-subtraction-based mask estimation is similar to the procedure used in conventional methods.

VTS-based estimation and classifier-based estimation are new techniques that have been introduced in this

thesis. 

It was found that all three methods were effective in estimating masks for speech corrupted by white

noise. The best performance was obtained using VTS-based mask estimation. The combination of VTS-

based mask estimation and the best cluster-based reconstruction method resulted in the best recognition

accuracies obtained with any data compensation method to date.

None of the mask estimation methods were effective on speech corrupted by music. However, it was

found that if the type of music corrupting the speech and the global SNR of the corrupted speech were

known a priori, good estimates of the masks were obtained with classifier-based estimation, and signifi-

cant improvements could be seen in recognition accuracy. Similar results have been reported by Seltzer

[Seltzer 2000].

Discussion 

Estimation of the spectrum of a random process is a difficult task. It is necessary to have a sufficiently

long sample of the process to obtain reliable estimates. It is important that the spectrum of the noise does

not vary much within this segment. Spectral subtraction, VTS, and other methods of estimating the spectra

therefore work best when the noise spectrum is stationary or slowly varying. They are very effective when

the corrupting noise is white. It can be expected that these methods will be equally effective on other

slowly varying or stationary noise. However, when the spectrum being tracked is that of a non-stationary

signals such as music, the estimates of the spectrum are very poor, or completely wrong. As a result spec-

trographic masks estimated using such estimates are very poor. 

Classifier-based mask estimation, on the other hand, does not attempt to estimate the noise spectrum.

However, the features being used for the classification are sensitive to the global SNR of the speech. As a

result, classifier-based estimation is effective only when the global SNR is known a priori.



Chapter 9. Summary and Conclusions 177

9.4 Topics for further investigation

The methods presented in this thesis have been very successful at compensating for noise when spectro-

graphic masks can be reliably found. When the corrupting noise is white, the masks can be very well esti-

mated by VTS-based estimation. VTS-based mask estimation is dependent on the estimate of the noise

spectrum obtained by VTS. It is known that VTS is quite successful at estimating noise spectra when the

noise is slowly varying or stationary [Kim 1998]. VTS-based estimation of spectrographic masks will gen-

erally perform reliably when the corrupting noise is slowly varying or stationary. We expect, therefore, that

the methods presented in this thesis will, in general, result in significant improvements in recognition accu-

racy on speech corrupted by stationary or slowly varying noises.

However, VTS-based estimation of masks, as presented in this thesis, uses a single estimate for the

noise spectrum for the entire utterance. This estimate can be significantly improved by permitting the esti-

mate to vary from frame to frame. There are two possible ways of doing this.

1) Estimate the noise spectrum in a sliding window of the speech

2) Use a Kalman filter formulation of VTS to recursively estimate the noise in each incoming frame for

speech

In the first approach the estimate of the noise spectrum within any frame of speech would be obtained

based on a small segment of speech, say 1 second long, centered at that frame. It is expected that such an

estimator would be able to track the spectrum of slowly varying noises better than the direct formulation of

VTS used in this thesis. 

In the second approach an a priori distribution of the noise spectrum would be assumed and recursively

updated based on every incoming spectral vector of noisy speech. It has been shown that this method of

estimating the noise spectrum is significantly superior to the standard VTS formulation at tracking time-

varying noises [Kim 1998].

Classifier-based estimation of spectral masks has been seen to be quite effective for white noise. It has

also been observed to be effective when the global SNR and type of corrupting noise are assumed to be

known a priori. Both these requirements, however, may be unrealistic. Several possibilities present them-

selves to improve the performance of classifier based systems.

1) Use features that are based specifically on the characteristics of speech, rather than the nature of the
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noise, for classification

2) Adapt the classifier in an unsupervised manner

3) Correlate the classification decisions regarding the elements of the spectrogram

In the first approach we would use computable features of the speech waveform that are known to be

corrupted by noise. For example, for voiced speech the ratio of the energy in the harmonics of the pitch fre-

quency to that at other frequencies, within any band of frequencies, is high for clean speech, and lower at

other frequencies [Morgan 1997]. However, when speech is corrupted by noise, this ratio would change.

Other features that suggest themselves are the average spectral tilt within any frequency band, the phase

characteristics of speech spectra, etc. These features are likely to be more invariant to the kind of noise cor-

rupting the speech than the simple power spectral values and their derivatives used in this thesis. Promising

results using this approach have been reported by Seltzer [Seltzer 2000].

In the second approach the distributions of the classes would be adapted to the noisy data in an unsuper-

vised manner. Adaptation methods such as MAP [Duda 1973] or MLLR [Leggetter 1994] could be used to

adapt the distributions. Classification would be done with the adapted distributions. This method would be

expected to result in better masks than classification without adaptation would, provided the baseline clas-

sifier is reasonably correct. Also, adaptation could be used even when speech-specific features are used for

classification.

In the third approach we would take advantage of the fact that when speech is corrupted by noise, the

noisy regions of the spectrogram occur in blocks. Thus, the fact that any particular element is noisy imme-

diately raises the probability that the elements surrounding it are noisy (and to be deleted) too. This corre-

lation could be captured by statistical models such as Markov fields. Use of these models can be combined

with adaptation and speech specific features.

Another approach that could be used to estimate spectrographic masks would be to treat noisy regions

of spectrograms as outliers in an otherwise normal distribution and use outlier identification techniques,

such as those described in [Tukey 1977], to identify them. This method would be useful for speech cor-

rupted by sharp or transient noises such as door slams and phone rings, 

Although the reconstruction obtained using the methods developed in this thesis is extremely good, it

can be improved further. Cluster-based reconstruction techniques model the sequence of spectral vectors in
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the spectrogram as the output of an IID process. The distribution of the vectors is modeled simply as a

Gaussian mixture distribution. No information regarding the sequentiality of the vectors is retained. A

superior cluster-based representation would be to model the sequence of spectral vectors as the output of

an HMM. This is just a simple extension of the cluster-based model, where the a priori probability of the

various clusters is made dependent on which cluster the previous vector belonged to. However, the intro-

duction of this simple probability enforces temporal constraints on the model and would be expected to

improve cluster identification and reconstruction significantly. 

An even better model would be to model the sequence of vectors as the output of a higher order HMM.

In a higher order HMM of order  the a priori probability of any cluster is made conditional to the cluster

that the previous  vectors belonged to. As a result, a much greater constraint is placed on the sequential-

ity of the vector. One serious disadvantage with higher order HMMs is the exponential increase in the

number of parameters need for the model with increasing . The estimates obtained for the parameters,

with any amount of finite data, would be very poor. Also, the reconstruction would become extremely

expensive computationally. A simple, and intuitively appealing solution to this problem is to use what we

term a tree-structured higher order HMM. In a standard higher order HMM the clusters that any of the past

vectors can belong to are assumed to be identical to the clusters that could be associated with the current

vector. In a tree-structured HMM the number of clusters modeling past vectors would be fewer than the

clusters modeling the current vector. Figure 9.1 represents such a model schematically.

This model has the intuitive appeal that while the distribution of data at any instant is dependent on the

distribution of data occurring in the past, it is less and less dependent on the precise location of the past

data points as they get further away from the current data point. Additionally, the total number of parame-

N

N

N

t =-1

t =-2

t =-3

t =-1

t =-2

t =-3

Figure 9.1 The panel to the left represents the manner in which data is modeled in a standard 3rd order HMM. The
same 6 clusters covers the space at every time instant. The right panel shows data modeling in a tree-structured
HMM. A smaller numbers of clusters are used to represent the distribution of data that occurs further back in time.
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ters needed in such a model would be much fewer than a standard higher-order HMM and would therefore

be much better estimated. Reconstruction would simply proceed by identifying the cluster that the current

vector belongs to, and reconstructing the missing portions of the vector based on the distribution of that

cluster.

Covariance-based reconstruction was seen to be superior to cluster-based reconstruction both when ran-

dom elements of the spectrogram were deleted, and when the bounds implied by the observed values of

noisy elements were not considered. However, once the bounds were considered it was found to be much

better to use multiple-cluster-based reconstruction. The application of the bounds improved the accuracy of

cluster identification greatly, resulting in this improved performance. Similar improvement could be

expected from covariance-based reconstruction if the spectral vectors in the spectrogram were assumed to

be generated by one of a number of WSS random processes. Reconstruction would then consist of identify-

ing which processes generated what vector and using the parameters of that process, as well as the cross-

covariance between that process and the processes that generated adjacent vectors, to reconstruct the com-

plete vector. This model would be fairly complex and, possibly, computationally expensive. A simpler

model might be to model the distributions of short sequences of vectors (say 5-10 vectors) using a cluster-

based representation. Reconstruction would proceed as in the case of cluster-based reconstruction - the

cluster that any sequence of vectors belongs to would be identified, and the distribution of that cluster

would be used to reconstruct the missing components of the central vector in the sequence.

9.5 Some remaining questions

While we have shown that the methods in this thesis are very effective on speech corrupted by white

noise, and expect that they will perform equally well with other slowly varying noises, the only situation

where they have been tested is when the recognition system itself has been trained with clean speech. This

is not such a serious problem as long as the noise remains additive. Experiments show that the recognition

accuracies obtained when the best cluster-based reconstruction technique is used with the true (oracle)

spectrographic masks for the utterances, the recognition accuracy obtained on speech corrupted by noise to

5 dB SNR is comparable to the accuracy obtained when the recognizer is trained with speech at 5 dB SNR.

In other words, the recognition accuracy obtained with 5 dB speech on the clean speech recognizer after

missing-feature based compensation is applied is comparable with the recognition accuracy obtained with
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a matched recognizer where system has been trained to recognize 5 dB speech. Previous experience with

other data compensation algorithms indicates that if the missing-feature-based compensation were to be

applied to both the data used to train the recognizer and the data being recognized, even better performance

may be achieved.

However, in all of this, it has been assumed that the noise is additive, and that a clean uncorrupted cor-

pus of speech exists such that the noisy speech could be modeled as speech from this corpus to which noise

has been added. The statistical properties of this clean corpus have been used for the compensation. The

question that arises is: what happens when such a clean corpus is not available. In such a situation, both

VTS-based spectrographic mask estimation, and cluster or covariance-based reconstruction cannot be per-

formed as described in this thesis. We have not worked out a satisfactory solution to this problem yet.

Another question that remains unanswered in all the experiments reported in this thesis is the effect of

linear filtering on the reconstruction. It has been assumed everywhere that the speech has been corrupted

solely by additive noise. However, when speech is recorded using arbitrary microphones the filter response

of the microphone and the recording environment affect the speech as well. In such a situation the proce-

dure that estimates spectrographic masks would have to estimate the log-spectrum of the impulse response

of the filter as well. The filter response would then have to be subtracted out of the log-spectral values

before reconstruction is performed. Since VTS has been shown in other work to be extremely effective at

estimating these filter characteristics, we hypothesize that the performance of the reconstruction tech-

niques would not be affected greatly by linear filtering. However, this hypothesis remains to be tested.

Finally the effect of non-linear phenomena such as non-linear filtering or clipping cannot be modeled as

additive noise. In such a case, while the entire concept of reconstructing the badly damaged regions of the

spectrogram remains valid, the precise manner in which bounding or other information is extracted from

the observed values of the spectrogram would depend on the non-linear phenomenon affecting the speech.

We have not investigated the effect of any non-linear phenomena on our methods.

9.6 Future directions

This thesis has presented a set of data-compensation methods based on the missing-feature paradigm

that are seen to be very effective on speech corrupted by slowly varying noises. However, for any noise
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compensation solution based on the methods described in this thesis to be complete some of the questions

mentioned in this chapter would have to be answered. The primary question is the effect of not having a

corpus of clean speech to begin with. Since the best current speech recognition systems rely on “multi-

style” training, where the system is trained with speech recorded under various conditions, this is fre-

quently the case. It may be possible to obtain the distributions of the spectrograms of clean speech from the

clean regions of the spectrograms of the multi-style training data. However, for this to be possible, it is

important to be able to identify these regions of these spectrograms first. Thus, the primary focus of any

future work would have to be on improving the estimation of spectrographic masks under these conditions.

Even if the spectrographic masks were perfectly identified, the statistical properties of the spectrograms

of clean speech would have to be estimated from these incomplete spectrogram. There has been significant

work in the fields of statistical analysis on estimating the statistical properties of incomplete data [Ghahra-

mani 1994][Little 1987]. However, these methods would have to be adapted to work on spectrographic

data, to develop the kind of statistical models used with the reconstruction techniques. This would have to

be a part of any future work.

Finally, there may be situations where it may be required to perform recognition using log spectra. In

such a situation, better recognition accuracies may be obtained using missing feature methods if the recog-

nizer itself were trained using incomplete spectrograms of noisy speech. The mathematics for this are

readily available [Ghahramani 1994]. However, the actual implementation of such a solution still remains

to be done.
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Appendix A
Derivation of selected statistical relationships

A.1 Mean Squared Error (MSE) of an MAP estimate

In this section we derive the formula for the mean squared error of the MAP estimate of a Gaussian ran-

dom vector.

Let  and  be jointly Gaussian vectors. Let  and  be the mean vector and covariance

matrix respectively of . Let  and  be the mean vector and covariance matrix of . Let 

be the cross-covariance between  and . The conditional distribution of  is seen to be a Gaussian

of the form (Section 2.5.4)

(A1.1)

The MAP estimate of  conditioned on  is given by

(A1.2)

which gives us

(A1.3)

i.e. the MAP estimate of  is simply the expected value of . i.e. .

The MSE of the MAP estimate is defined as

(A1.4)

However,  is simply the variance of  and is seen from

Equation (A1.1) to be . We therefore get
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(A1.5)

(A1.6)

A.2 MSE increases as length( ) increases

In this section we show that the mean squared error of the MAP estimate of the missing components of

a Gaussian random vector increases as the number of missing components increases.

Consider two incomplete observations  and  of a Gaussian random vector .  is identical to

, except that it has one more component missing than . Let the vector of observed components of

 be , and the vector of missing components in  be . Similarly, let the observed and miss-

ing components of  be  and  respectively. Since  has one more component missing than

, we would have

(A2.1)

where  is the component that is additionally missing in .

The a posteriori distributions of  and  would be given by

(A2.2)

(A2.3)

and would both be Gaussian.  and  would also be Gaussian [Papoulis 1991].

Let  be the variance of . The MSE of the MAP estimate of  is then

. 

Let  be the variance of . Let  be the variance of . Let
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tioned on . Then it can be shown (Section A.1) that 

(A2.4)

since  is the variance of a single component and is therefore simply a positive number.

The MSE of the MAP estimation of  is the trace of . We get from Equation (A2.4) that

(A2.5)

It is easy to see that  has to be a positive number. Therefore

 (A2.6)

It is also easy to see (Section A.1) that . i.e.
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Combining Equations (A2.5) and (A2.7), we get
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Combining Equations (A2.7) and (A2.8) we get
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In other words, the MSE of estimation of  is less than the MSE of estimation of . It is easy

to extend the above logic to show that in general the MSE of estimation is greater for the vector with the

greater number of components missing. 

A.3 Average distance to closest element in an incomplete spectrogram with 

random elements missing, as a function of the drop fraction

In this section we derive the formula for the average distance between any point in a sequence, where

random elements have been deleted, and the closest observed point as a function of the drop fraction.
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for the nearest neighbor to any element in this sequence to be  points away, it is necessary that the 

intervening points on either side of the present point are all missing, and that at least one of the two points

 locations away from the current point is present. The probability that the  points immediately on

either side of the current point are all missing is . The probability that at least one of the two

points  locations away from the current point is present is . Thus, the probability that the nearest

point to the current point is  locations away is given by

(A3.1)

The expected distance of the nearest point to the current point is then given by

(A3.2)

It is easy to show that since 
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Combining Equations (A3.2) and (A3.3) we get
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For finitely long sequences the expected distance of the closest point would be somewhat larger than

that given in Equation (A3.4) and would depend on the distance of the boundaries of the sequence from the

point in consideration.
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In this section we show that the mean squared error of the MAP estimate of a Gaussian random vector
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Consider two jointly Gaussian vectors  and . The MSE of the MAP estimate of  is given by

(A4.1)

where  is the covariance matrix of ,  is the covariance matrix of , and  is the cross

covariance between  and . 

 has the same properties as , i.e. it is symmetric and positive definite. We can therefore con-

struct a random vector , such that . We can now write
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Therefore, from Equation , as the covariance between the components of  and  decreases, the

MSE of the MAP estimate of  increases.
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Appendix B
Iterative procedure for joint bounded MAP estimation

The problem of joint bounded MAP estimation is that of finding a set of values  such that 

(B0.1)

We derive an iterative solution for this estimate in this appendix. 

Let  be the estimate obtained after the th iteration of this procedure. If the th esti-

mate of  is obtained as
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then it is easy to see that 
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step in the iteration would result in an increase in . 

When  is Gaussian,  has only one

peak. Thus, the iterative solution given by Equation (B0.4) is guaranteed to find this peak, which is the

unique solution to Equation (B0.1).

Therefore, the iterative solution to the joint bounded MAP estimation of a set of jointly Gaussian vari-

ables  conditioned on the bound  is given by the following

procedure:

1) Initialize all the  values as 

2) Obtain the th estimate of  as 

3) Iterate until  converges.
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P y1 y2 … yk, , ,( ) P y1 y2 … yk y1 Y1 y2 Y2 … yk Yk≤, ,≤,≤, , ,( )

y1 y2 … yk, , , y1 Y1 y2 Y2 … yk Yk≤, ,≤,≤

yi yi
1 Yi=

n 1+ yj

yj
n 1+ maxy1

P yj y1
n 1+ y2

n 1+ … yj 1–
n 1+ y, , , , j Yj yj 1+

n … yk
n, , ,≤( ){ }arg=

P y1 y2 … yk y1 Y1 y2 Y2 … yk Yk≤, ,≤,≤, , ,( )
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