Using Praat for Linguistic Research

Will Styler

University of Colorado at Boulder Phonetics Lab

Document Version: 1.4.5

Last Update: March 6, 2014

Important!

This document will be continually updated and improved. Download the latest version at:

http://savethevowels.org/praat

Using Praat for Linguistic Research by Will Styler is licensed under a Creative Commons
Attribution-ShareAlike 3.0 Unported License. For more information on the specifics of this
license, go to http://creativecommons.org/licenses/by-sa/3.0/.

http://savethevowels.org/praat
http://creativecommons.org/licenses/by-sa/3.0/

Contents

i

Version History]|

I3__About Praat|

[3.1 Praat WINdOWS|. o v o o o e e e e e e e e e e e

&}

Recording Sounds|

[5

Opening and Saving Files|

[5.1 Opening Files| e e
[5.1.1 Working with longer sound files|
[5.2 Saving Files|. e

6

Phonetic Measurement and Analysis in Praat|

[6.1 Working with Praat Waveforms and Spectrograms|
[6.1.1 Pulling out a smaller section of the file for analysis|.
[6.2 Adjusting the Spectrogram Settings|« v v v v ittt e
|6.2.1 Narrowband vs. Broadband Spectrograms|
[6.3 Measuring Duration] vt vttt
[6.3.1 Measuring Voice Onset Time (VOT)[.
[6.4 Examining and measuring Fo/Pitch|
[6.4.1 Measuring F, from asinglecycle],
|6.4.2 Viewing Pitch via a narrowband spectrogram|
|6.4.3 Using Praat’s Pitch Tracking|
|6.4.4 Improving Pitch tracking by changing the Pitch Settings|.
|6.4.5 Scripting only: Creating a Pitch Object|
[6.4.6 Getting Maximum, Minimum, and Average pitch for a section of speech|.
[6.5 Measuring Pulses, Jitter, Shimmer, and Harmonics-to-noise ratio|
[6.6 Measuring Formants| e e e
|6.6.1 Using the Formant tools in the Editor window|.
|6.6.2 Improving Formant Finding results|.
[6.6.3 Scripting Only: Formant Objects|
[6.7 Measuring Intensity/Amplitude],
[6.7.1 Units of Intensity (dBvs. Pascal)|
[6.8 Working with Spectra]
[6.9 Taking a spectralslice] e

[6.10 Measuring Harmonic Amplitude, Frequency|.
[6.11 Measuring Creakiness and Breathiness using Spectral Tilt)
[6.12 Measuring Nasality using A1-PO|
[6.13 Measuring Spectral Center of Gravity|.o i it i i it .

|7 Creating and manipulating sound Files in Praat|

[7.1 Creating sounds from Formula|
[7.2 Cropping, Copying, Splicing and Pasting|
[7.3 Sampling rates and Resampling|
[7.4 Filtering Sounds|. L.

[7.4.1 Low-passfiltering]

[7.4.2 High-passfiltering]

[7.4.3 Band-pass (notch) filtering|.
[7.5 Pitch Manipulation (To Manipulation...)|
[7.6 Matching the pitch tracksof twosounds|
[7.7 Manipulating Duration (Slowing Down and Speeding Up Sounds)|
[7.8 Matching Intensity]o i it i e
[7.9 Combining Sounds| e e
[7.10 Formula Modification: Waveform addition, subtraction and so much more|. . . .
[7.11 Synthesizing Sounds from scratch| L oL L.
[7.12 Source-Filter Vowel Resynthesis|

|8 Exporting images for use and publication|
[8.1 Creating Complex Displays|
[8.1.1 Overlaying Plots|
[8.1.2 Multiple Plots in the Picture Window|

|9 Annotating Sound Files (Praat TextGrids)|

|10 Using Log Files|

|11 Scripting in Praat|
(11.1 Whatis Praat sCripting?|« . o« o vt it e et e e e e e e e
[11.1.1 Praat’s scripting tutorials|
[11.1.2 Praat scripts vs. Editor scripts| i e
[11.2 Working with Scripts| e
[11.2.1 Opening and running a Praatscript]
[11.2.2 Making (and removing) Menu Shortcuts for scripts|.
[11.3 Creatin€ @ NEW SCIIPH . + « v v v v v e e e e e e e e e e e e e e e e e e et
[11.3.1 Using other text editors|. o ittt
11.3.2 Filenames| e
[11.3.3 A Note on Praat Script Commands|

29
29
30
31
32
32
33
33
34
34
36
37
37
38
41
41

43
45
45
46

46

49

[11.3.4 How to magically write a Praat script (using the Praat "history" function)| 60

[11.3.5 Writing your first single-command script] 62
[11.3.6 Scripts with Variables| 63
[11.4 About the Praat Scripting Language|.t i it ... 65
[11.4.1 for’ loops| oo i 65
11.4.2 f’ statements|. e e e 66
[11.4.3 ‘while’ loops|. o e 67
.. 67
[11.4.5 Commented lines (#)| 71
[11.4.6 Scaling scripts up: nowarn, noprogress, and avoiding the editor window| 71
[11.4.7 Useful tips| o i e e e 72
[11.4.8 Everything Else|. 74
11.5 In defense of Code Cannibalism| 74
[11.6 Closing Remarks on Praat scripting|, 75

1 Version History

e 1.4.5-March 6, 2014 - Made a number of clarifications, improvements, fixes, and updates
to the scripting section based on (wonderful) feedback from José Joaquin Atria.
Thanks, José! Also, added brief discussion and URLs for various forced-alignment tools
in the intro to Section[11]

e 1.4.2 - January 16, 2014 - Added Section [11.4.6] discussing nowarn, noprogress, and
other ways to speed up your scripting on large datasets.

e 1.4.1 - January 10, 2014 - Fixed a few typoes and updates based on Gareth Walker’s
feedback. Thanks Gareth!

e 1.4 - December 9, 2013 - Added discussion of the shift in command syntax in newer
versions of Praat (Section[11.3.3)). Added discussion of units of intensity, addressing the
Pascal vs. dB issues some of my students were having (Section [6.7.1). Added further
warning, admonition, doom and gloom to Section about A1-PO as a measure of
nasality, which, sadly, is complicated. Updated the "Reasonably Recent" Praat version
number to encourage people to upgrade. Added quick code example for finding odd and
even numbers in a Praat script to Section Added a brief discussion of "while"

loops (Section[11.4.3)).

e 1.3.6 - October 2, 2013 - Added discussion of the smoothing of the intensity line and its
relation to the pitch track in Praat.

e 1.3.5 - March 22, 2013 - Updated License for the Manual. A few typoes squashed.

1.3 - September 28th, 2012 - Added Section 7.7, Manipulating Duration with explana-
tions of how to slow and speed sound files

1.2.5 - August 10th, 2012 - Added discussion of Praat Picture for more complex displays

1.2 - May 19th, 2012 - A few small tweaks, added a section on measuring Voice Onset
Time

1.1.1 - January 2nd, 2012 - A few other small corrections based on Paul Boersma’s feed-
back.

1.1 - January 1st, 2012 - Updated with Paul Boersma’s valuable feedback and a variety
of small corrections.

1.0.2 - July 14th, 2011 - Removed some typoes and fixed other small issues.

1.0.1 - July 10th, 2011 - Updated to include instructions on removing scripts from But-
tons.

1.0 - July 10th, 2011 - Version created for LSA Institute Workshop on Praat.

2 Introduction

Praat is a wonderful software package written and maintained by Paul Boersma and David
Weenink of the University of Amsterdam. Available for free, with open source code, there is
simply no better package for linguists to use in analyzing speech.

Unfortunately, much of the existing documentation for the software is just that, software docu-
mentation, and is not designed to help linguists (who may not necessarily consider themselves
to be "phoneticians” or have a strong phonetics background) get the measurements and make
the changes that they need and desire for their research.

As such, rather than introducing each menu item and function as such, I've instead chosen
to describe how to do some of the tasks that linguists want to do without assuming a strong
phonetics or programming background. Then, eventually, we’ll discuss some of the more com-
plicated measures and tricks one can perform with Praat.

Of course, no one workshop can discuss the myriad of features present in Praat, nor cover all
of the quirks of the package, but this workshop will hopefully leave you feeling more at home
in Praat, and give you an opportunity to go forth and explore further on your own.

2.1 Versions

This guide will assume that you are using a relatively recent build of Praat (5.3.60+), and
there’s no reason not to download the latest version whenever released. All screenshots will be
from Praat 5.3.60 running on Mac OS X, but your copy on your platform should not differ sig-
nificantly. Unless otherwise specified, workflows for making measurements and manipulations
do not differ significantly across platforms.

2.2 Other Resources

Although this guide aims to be painfully comprehensive, there are many other resources avail-
able for helping with Praat. The first step for dealing with any issue is Praat’s built in help
guide, accessible from the upper right corner of most windows in the program. You'll be best
served by starting with "Intro" and moving from there.

There are also a variety of tutorials for Praat available online, and the Yahoo! Groups "Praat-
users" group, whose archives can be searched at the below link:

http://uk.groups.yahoo.com/group/praat-users/

You will want to search the archives before posting, as there are likely a great many people
who have had your question before in the history of the software.

http://uk.groups.yahoo.com/group/praat-users/

2.3 Getting and Installing Praat

Praat can be downloaded fromhttp://www.praat.org, and its installation will vary depending
on your platform.

e Mac OS X - Just drag Praat into your Applications folder.

e Windows (XB Vista, 7) - Download the installer and run it, and a link to the program will
be placed on your desktop.

e Linux - If you’re running Linux, you’ll be able to figure out the install on your own. Many
distributions have Praat as an installable package in their repositories, but check the
version numbers, as you won’t want anything older than 5.2.x.

3 About Praat

3.1 Praat Windows

Once you've opened Praat, a variety of windows will open automatically, and there are many
other windows which will pop up when using the software. It’s best to discuss these now so
we can refer to them by name later when discussing the path to certain commands.

The Praat Objects window (Figure [1)) is where you’ll start most workflows, using this menu
to open, create and save files, as well as to open the various editors and queries which you’ll
need to work with sound files.

The Editor window (Figure [2) is where you'll spend most of your time, and can be accessed
by selecting a sound and choosing "View & Edit". When examining a sound file, the editor
window will show the sound’s waveform on the top and a spectrogram on the bottom, and the
cursor will allow you to take selections and measurements. The menus along the top will allow
you to show and hide different bits of information (formants, pitch, intensity), as well as to
make more detailed queries. When working with other types of Praat objects (e.g. spectra),
the editor window will allow you to query those objects as well.

When you make a query, either in the editor window or from the objects window, the Info
Window will pop up with your results. You can also print to this window when scripting in
Praat (see Section [11). Note that information printed here will not necessarily be saved, and
running a new query will overwrite it by default.

The Praat Picture window (shown towards the end of the document in Figure is used
to create and display publication-quality images, and is open by default when you start the
program. For detailed information about using the Pictures window and why it exists at all,
see Section [8]

http://www.praat.org

0o PaatObjects

[Vew O o)

Objects: (Sound help)

2. Sound untitled C View & Edit 3
(Play)
| Draw - v|
| Query - .l
| Modify - 7]
| Annotate - v|
Analyse
| Periodicity - vl
| Spectrum - v|
| Formants & LPC - v|
| Points - v|
(To Intensity...)
Manipulate
(To Manipulation...)
(To KlattGrid (simple)...)
Synthesize
| Convert - -
| Filter - v|

———— yair || Combine - v

(Rename...) (Copy...)

(Inspect) (Info)

Figure 1: The Praat Objects Window

Knowing the names of all these commands allow us to more easily describe the commands
to use when working with Praat. For instance, if this guide says that you get the duration of
a sound by using Objects — Query — Query Time Domain — Get Total Duration, that means,
roughly, "Go to the Objects window, Choose "Query", then from that submenu choose "Query
Time Domain", then "Get Total Duration"'.

4 Recording Sounds

To record sound using Praat, you’ll want to plug in your microphone, sound card, or external
ADC (Analog-Digital Conversion) box to your computer before starting Praat, and then...

Objects — New — Record Mono

This will pull up a recording menu which allows you to choose a sampling frequency (the
default, 44100 Hz, is fine for most purposes), a microphone or other sound source, and whether
to record a mono or stereo sound. Press Record to record, and Stop to stop, being careful that the
sound level bar stays within the "green" range to avoid clipping. Once you've made a recording,
name it and choose Save to list, and it will now show up in the Praat objects window where it’s
ready for editing.

If you don’t see a green bar (indicating that Praat hears you) while you are recording, try
changing the Input source on the left side of the SoundRecorder window. If this doesn’t help,
go to the computer’s sound control panel to ensure the proper microphone is selected, and that
the input volume is not turned way down.

Praat only records in one minute long chunks out of the box. To record longer sounds, you
can either change the buffer size in Praat — Preferences — Sound Recording Preferences or
you can use Audacity (free, available from |http://audacity.sourceforge.net/) to record
the session and then import the sounds into Praat (see Section [5) afterwards for analysis and
manipulation.

5 Opening and Saving Files

5.1 Opening Files

If you already have a sound file recorded that you’d like to open (recorded in .aiff, .wav or .flac
format), there are two ways to open it in Praat. If you're using Praat on OS X, you can drag
supported files onto the Praat icon in the dock. However, if that doesn’t work, or if you're on a
different platform:

http://audacity.sourceforge.net/

Objects — Open — Read from File...

Then use the next dialog to find the files you're interested in on your hard disk. Once you've
loaded the files, they’ll appear in your objects window for further use. Note that other files
created by Praat can be opened in the same way.

Tip: Praat can’t open .wma, .mp3 or .m4a audio files. To convert these easily to .way files en
masse, download iTunes, set it to import files in .wav or .aiff format in Preferences, and use iTunes
— Advanced — Create .wav version.

5.1.1 Working with longer sound files

Praat has historically had trouble working on sound files more than 20 minutes long, and if
you're using a 32-bit version or have little available memory, you may experience frequent out-
of-memory errors working with large files unless you use the Objects — Open — Open long
sound file... option. However, sounds read in as Long Sound objects cannot be used for all
measurements. It's recommended to cut your files into chunks shorter than an hour, either
using Audacity or by editing the Long Sound object as described in Section

Mac users, this is a non-issue if you have a 64-bit Mac and download a recent 64-bit build for
OS X.

5.2 Saving Files

Praat does not save anything by default, and until you save files explicitly, opened or edited ver-
sions of the files will exist fleetingly in the objects window. For emphasis, unless you save files
explicitly, they will disappear completely and unrecoverably when Praat is closed.

To save a file, select the file in the Objects window, then...
Objects — Save — Save as file

For sound files, you'll likely choose Save as WAV file, but for the other types of files (TextGrids,
formant objects, pitch objects, etc), you'll save them as text files.

As this can be very tedious, you might consider downloading and installing a Praat script (see
Section [11)) which saves all the objects in the objects window at once.

10

8no 2. Sound untitled

File‘ Editv Quen(Viewv Sele(g Spec(rum‘ Pi(:l’l Imensi(y: Forman5 Pulsesv Helq

0.403526

0.3371

0.04453|
[V

-0.3712
5000 Hz|

0 Hz|

0.80

(all) Cin) Cout) (sel) (bak) ™ Group

Figure 2: The Praat Editor Window
6 Phonetic Measurement and Analysis in Praat

6.1 Working with Praat Waveforms and Spectrograms

Once a sound has been recorded or opened, you’ll spend much of your time interacting with
the sound by means of the Editor window. To open a sound in the editor window, select the
sound and then...

Objects — View & Edit

You're immediately presented with an editor window (like that in Figure[2), showing the wave-
form of the sound, and if the sound is sufficiently short, a broadband spectrogram showing the
spectral energy of the sound over time. In addition, you might also be presented with a series
of red dots (representing formants), blue lines (representing the speaker’s pitch), and a yellow
line (representing intensity). These can be enabled and disabled in the Editor — View — Show
Analyses menu.

Clicking within this window will place the cursor on the waveform and spectrogram. If you
click within the editor window, the cursor will spawn two dotted lines. A vertical bar shows
the time within the sound where you clicked (labeled at the top in seconds) and, if you clicked
within the spectrogram, a horizontal bar shows the frequency at the cursor (labeled on the left
in red). If the pitch or intensity tracks are displayed where the cursor is placed, values at the
time the cursor represents are given on the left side of the editor window.

11

In addition, you can click and drag (or use the Select menu) to select portions of the sound.
The time of the start and finish of the selection will be displayed in red, and the duration of the
selection (in seconds) will be displayed in the top of the bar.

To play a sound in the editor window, use the three gray bars at the bottom of the editor window.
The bottom-most bar (Total Duration) will play the entire sound. The middle bar (Visible Part)
will play only the visible portion of the sound. The different sections of the top bar (split by the
cursor or selection), when clicked, will play the corresponding pieces of the visible portions of
the sound file. Hitting <tab> also plays the visible portion of the file.

Obviously, to view some analyses and to get a closer look at your data, you’ll need to use the
five buttons in the bottom left corner of the window. As you can imagine, all shows the entire
file, in and out zoom in and out, sel zooms to make the current selection fill the window, and
bak zooms back to the previous zoom level. For longer sound files, in order to view analyses
like the Es]pectrogram and formants, you’ll need to zoom in to show only a pre-defined amount
of time

The Group setting in the bottom right corner of the window will ensure that if two sounds are
open in Editor windows at once, they’ll share the same zoom characteristics. This is best used to
compare two versions of the same file, say, an original versus one with an acoustic modification
made.

All of the measures discussed in this section will use the Editor window, and you will spend
much of your time working with Praat here, so any time spent gaining familiarity will be repaid
in spades.

6.1.1 Pulling out a smaller section of the file for analysis

Although zooming in and out will get you most of the way there, it’s often useful to isolate a
section of a sound (usually a single word or vowel) into a different Sound object. To do this,
select a portion of a sound, say, a vowel, and then:

Editor — File — Extract Selected Sound (time from 0)

This will create a new sound in the Objects window, containing just the selected part of the
original sound. The (preserve times) option (in the same Editor — File menu) just keeps the
timecode on the extracted sound the same as in context (so, if the vowel starts at 0.245 s, the
extracted sound file will start at 0.245 s).

This can also be done from the objects window using Objects — Convert — Extract part...

!This amount of time can be changed in Editor — View — Show Analyses — Longest analysis. 20 seconds is a
sane value for most modern computers, much higher will cause your system to lag when viewing files.

12

" _FeVe Spectrogram settings

View range (Hz): 0.0 5000.0

Window length (s): 0.005

Dynamic range (dB): 50.0
(all of your "advanced settings” have their standard values)

(your "time step strategy” has its standard value: automatic)

(Help Y (" Standards) (cancel) (Apply y (oK)

Figure 3: Praat’s Spectrogram Settings

6.2 Adjusting the Spectrogram settings

Although the basic 0-5000 Hz broadband spectrogram will suffice for many uses, it’s useful to
be able to change those settings. To make changes to the spectrogram settings...

Editor — Spectrum — Spectrogram Settings
This will pull up the Spectrogram settings window (like that in Figure
The most important settings here are the window length and view range.

View range controls how much of the spectrum is visible. For speech, you’ll likely be interested
in the range from 0 to 5000 or 6000 Hz, but if you’re examining fricatives, you might want to
look as high as 15,000 Hz. If you’re looking at music, you may focus on the area from 100 to
2000 Hz. Either way, this is how you set which part of the spectrum you care about.

If your sound files have a relatively small or large dynamic range (the difference in volume
between the loudest and quietest parts), or if your spectrograms seems too light or too dark,
you may want to adjust the dynamic range setting here, but 50 dB is usually safe.

Window length (given in seconds) controls how large of a chunk of the sound Praat will examine
when trying to find the frequencies present at a given moment in the signal. Looking at a larger
window of the sound will give more accurate information about the frequencies present, but
will also reduce the accuracy of the temporal information given. Varying the window length
allows you to choose between Broadband and Narrowband spectrograms.

13

6.2.1 Narrowband vs. Broadband Spectrograms

Praat defaults to showing a Broadband spectrogram, which is excellent for viewing the temporal
structure of the sound and for seeing vowel formants, but sometimes, you’ll want to look at
harmonics and F; instead. To do this, you’ll ask Praat to provide you with a narrowband
spectrogram. To do this:

1. Editor — Spectrum — Spectrogram Settings
2. Set the Window Length to 0.025 (or the narrowband window length of your choosing)
3. Click OK

Now, harmonics should clearly be visible in the spectrogram. To return to a broadband spec-
trogram:

1. Editor — Spectrum — Spectrogram Settings
2. Set the Window Length to 0.005 (or the broadband window length of your choosing)
3. Click OK

And you’ll be back to the default broadband spectrogram.

6.3 Measuring Duration
As you might expect, measuring duration is quite easy. Once the sound file is open in the Editor
window:

1. Select the portion of the file you’d like to measure (e.g. the vowel) with the cursor

2. Read the duration of the selection (in seconds) from the duration bar along the bottom
of the Editor window OR

3. Editor — Query — Get selection length and read your selection in the info window
If you'd like the duration of an entire file, just select the file in the Objects window and:

Objects — Query — Query Time Domain — Get Total Duration

6.3.1 Measuring Voice Onset Time (VOT)

"Voice Onset Time" (VOT) is the time between when the stop is released and when the voicing
of the following vowel begins. Measuring this time, which can be positive (say, for the En-

glish voiceless aspirated stop [t?a]), around zero (for the English "voiced" stop /d/, or, more
commonly, the voiceless unaspirated [ta] around the the world), or negative (for fully voiced

14

stops, where voicing starts before the stop is released, as found in most non-English languages).
Languages classify their stops largely based on Voice Onset Time, and it’s an excellent, more
gradient empirical measure of the "voiced/voiceless" phonological distinction.

Measuring Voice Onset Time (VOT) is very easy to do in Praat, as it’s just a duration measure-
ment between two set points, the release of the stop and the start of voicing.

1. Find the stop release
Find the start of voicing

Select the span between these two points

> W

Read the duration of the selection (in seconds) from the duration bar along the bottom
of the Editor window OR

o

Editor — Query — Get selection length and read your selection in the info window

6. If the start of voicing came before the stop release, the VOT is negative. Otherwise, the
VOT is positive.

In general, voiced sounds (in languages other than English) will have a VOT which is negative,
voiceless unaspirated sounds will have a VOT which is around 0, and aspirated sounds will
have a positive VOT.

6.4 Examining and measuring F,/Pitch

Fy and Pitch can be measured in a number of ways in Praat, more and less reliably.

6.4.1 Measuring F, from a single cycle
The surest way to get an accurate F, for a single cycle is to open the file in the Editor window,
then:

1. Zoom in to the point where you can see individual cycles in the sound file

2. Select one complete cycle, as accurately as possible, thus, giving Praat the period in
seconds (t)

3. Praat will calculate the frequency of the sound in Hertz in the top bar, giving it in the
format (___ / s). Use the zoom sel button to zoom in if you can’t see the frequency
readout

2This is going to be an accurate number (so long as you gave an accurate period), but you’re welcome to calculate
it yourself to make sure. f = %, where t is the period in seconds

15

6.4.2 Viewing Pitch via a narrowband spectrogram

The most reliable way of getting a sense of the pitch through the course of the word in Praat is
by examining a narrowband spectrogram with a reduced visible range (0 - 400 Hz for speech).
This can be done by editing the spectrogram settings as described in Section[6.2] The contours
of the harmonics will accurately represent the pitch contours of the voice during the word, and
doing this will give you a sense of the contour before using the Praat pitch tracker for more
precise measurement.

6.4.3 Using Praat’s Pitch Tracking

Praat does have the ability to provide a pitch track in the editor window. To enable the pitch
track in the Editor window:

Editor — Pitch — Show Pitch

At this point, a blue line will be placed on top of the spectrogram representing the pitch, where
Praat can find it. Once the pitch track is placed, you can use the cursor to check the pitch at
any given point in the word. Just place the cursor and look for the middle blue number on
the right side of the window. You can also place your cursor at a given point in the file and
Editor — Pitch — Get Pitch. Running Editor — Pitch — Get Pitch when a chunk of the sound is
collected will return the average pitch during that selection.

6.4.4 Improving Pitch tracking by changing the Pitch Settings

It's worth noting, though, that Praat’s pitch tracking can be quite finicky. You will often see it
jump up and down, doubling and halving the actual F,, and in many cases, especially where
the speaker is at all creaky, the pitch track will drop out altogether. This does not represent
any specific failing of the software, but instead, comes from the variability and noise inherent
in actual phonetic data. Part of the strength of Praat’s approach is that you as a user can
help Praat improve its pitch tracking for a given file or speaker by changing some of the Pitch
settings.

So, in order to do any serious research using the pitch track, and to avoid some of the problems
discussed above, you may need to adjust some of the pitch settings, to help Praat’s pitch tracker
better reflect the speaker’s voice. To do so:

Editor — Pitch — Pitch Settings...
Then adjust the settings as follows:

e Pitch Range (Hz)

16

— Set the pitch range to a reasonable range (50 - 400 for general usage, going much
higher for song or children’s voices). If you have a good idea what the speaker’s ac-
tual range is (taken from a narrowband spectrogram, for instance), set the minimum
to just under the speaker’s lowest F, and the maximum to just over their highest
pitch excursion. Changing the minimum pitch will also change the smoothing of
the intensity line, when displayed.

e Unit

— Here you can choose your unit of choice for the display of the speaker’s F;, ranging
from Hertz to Semitones to auditory-scaled measures like logHz or mel

e Method

— You’ll usually keep this parameter set to "autocorrelation”, but you can switch to
"cross-correlation" to see if it improves your pitch track.

You may want to tweak the advanced settings as well. To do so:
Editor — Pitch — Advanced Pitch Settings...
Then adjust the settings as follows:

e Silence threshold

— This is the amplitude threshold for what Praat considers to be speech, relative to
the peak amplitude in a file. If Praat can’t find ANY pitch in a quiet file, adjust this
setting.

e Voicing threshold

— Praat uses this value in its algorithm to help it decide whether voicing is present. If
Praat is finding voiceless portions of the word as voiced, raise this number. If Praat
isn’t detecting voicing that’s there in the signal, lower it. This is mostly important
when working with data with either very large or very small amounts of background
noise, and can often be left alone.

e Octave Jump cost

— Changing this value affects the algorithm’s decision about whether a jump in F is
reasonable. Larger values disfavor abrupt changes in F,. Increase this number if
you are getting pitch-doubling, decrease it if you are failing to track actual rapid
changes in F,.

e Voiced / unvoiced cost

- Increasing this number will make Praat more reluctant to claim a transition between
voicing and voicelessness. Turn this up if your pitch track is cutting in and out more

17

than is reasonable.

Praat’s pitch tracking is a good way to get a rough idea of what’s going on with the
a speaker’s Fg, but relying on it to give you sane measures is not wise, especially in
K scripts. Make sure you sanity-check any measures which seem unreasonable against

single-cycle F, measurements or against harmonic frequencies, and that you throw

D !
anser out anything completely ridiculous.

6.4.5 Scripting only: Creating a Pitch Object

If you’re not scripting, disregard this section. Working from a pitch object will win you very little
in a human-centric workflow.

When scripting, you may want to create a Pitch object (select the sound, then Objects — Analyze
Periodicity — To Pitch, specifying the proper range) so that you don’t need to open the editor to
measure pitch. Once a pitch object is created, you can instead select the Pitch object and run
Objects — Query — Get value at time... to find the pitch at whatever time you’d like. Pitch in
a pitch object is calculated in the same way as in the Editor window, so the same disclaimers

apply.

6.4.6 Getting Maximum, Minimum, and Average pitch for a section of speech

This is easy.

1. Select the portion of the sound for which you’d like the Maximum, Minimum or Average
Pitch

2. Select the proper command for your task from the Editor — Pitch menu.

Note that Editor — Pulses — Voice Report will give this information as well.

6.5 Measuring Pulses, Jitter, Shimmer, and Harmonics-to-noise ratio

As a part of its pitch-handling system, Praat includes the ability to find individual glottal pulses
in a signal and to analyze the pulses as part of more complex analyses. To view these pulses,
Editor — Pulses — Show Pulses, and they’ll then display on top of the waveform in your file. Al-
though the pulses themselves are mostly only useful in scripting, the Editor — Pulses menu con-
tains one of the more useful commands in the program: Editor — Pulses — Voice Report

18

To use this command, simply select a voiced section of the sound, then Editor — Pulses — Voice
Report. An information window will then pop up providing you with a variety of useful mea-
sures. In addition to maximum and minimum pitch (with additional statistics), you will also
be given the jitter, shimmer, harmonics-to-noise ratio (HNR), and the noise-to-harmonics
ratios for the selected portion of the sound.

Jitter is a measure of the periodic deviation in the voice signal, or the pitch perturbation of
the signal. Put differently, each cycle of speech with a given F, should, in a perfect world, have
the same period. The jitter in a person’s voice is how much one period differs from the next
in the speech signal. This is a useful measure in speech pathology, as pathological voices will
often have a higher jitter than healthy voices.

Shimmer (amplitude perturbation) is similar to jitter, but instead of looking at periodicity, it
measures the difference in amplitude from cycle to cycle. Once again, this is a useful measure
in speech pathology, as pathological voices will often have a higher shimmer than healthy
voices.

Harmonics-to-noise ratio (HNR) and Noise-to-harmonics ratio are both measures of the amount
of periodic noise compared to the amount of irregular, aperiodic noise in the voicing signal.
Because the aperiodic noise often represents frication in the vocal tract, the HNR will go down
significantly with hoarse or breathy speech, and other laryngeal pathologies will lower the HNR
further still.

6.6 Measuring Formants

Praat has several methods of built in formant measurement. Of course, the easiest way to
examine formant heights is by simply looking at a broad-band spectrogram and using the cursor
to find, roughly their frequencies. However, "eyeballing it" won’t pass scientific muster, and
is more time consuming than using Praat’s built-in LPC algorithms as a tool to help to find
them.

6.6.1 Using the Formant tools in the Editor window

When you open a sound file in the Editor window, you can choose to have Praat calculate and
display where it thinks that the vowel formants are (Editor — Formants — Show Formants).
This will overlay a series of red dots onto the image which represent peaks in the series of LPCs
which Praat has run.

This formant track can be queried at any time in a variety of ways, all accessed through the
Editor — Formants menu. If you're interested in a single formant’s height, you can place the
cursor where you want a measurement and choose Editor — Formants — Get formant..., but it’s

19

< NONS Formant settings

Maximum formant (Hz): 5300.0

Number of formants: 5.0

Window length (s): 0.0256

Dynamic range (dB): 30.0

Dot size (mm): 1.0
(all of your "advanced settings™ have their standard values)

(your "time step strategy” has its standard value: automatic)

4 Help Y (Standards) (cancel) (Apply Y fF—oKk—)

Figure 4: Praat’s Formant Settings Window

often more efficient to use Editor — Formants — Formant Listing, which will give you heights
for Fy, F,, F3 and F,, along with the timepoint at which the measures were taken.

In addition, if you're interested in formant bandwidth, bandwidth for the first four formants
can be taken using the Editor — Formants — Get ___ Bandwidth commands.

For hand measurement, using Editor — Formants — Formant Listing and sanity-checking by
visually inspecting the formants on the Spectrogram will usually produce reasonable results,
but there are ways to improve Praat’s formant-picking performance for a given speaker.

6.6.2 Improving Formant Finding results

For most speakers, the default settings will suffice, but if you find Praat to be struggling with
"missing" or the addition of extra formants, you’ll likely find that that particular speaker’s for-
mants are more effectively measured if you make some tweaks to Praat’s Formant Settings,
helping the computer with its task.

To apply any of these changes, you’ll want to open the Formant Settings window (see Fig-
ure[d):
Editor — Formants — Formant Settings....

Praat has to make a series of guesses about how many formants it will find, and how spread
out those formants will be. We typically will assume that speakers will have one formant per
1000 Hz, and thus, that there will be 5 formants in the 5000 Hz we usually worry about for

20

speech research. Thus, "5" is the default setting for Number of Formants, and the highest we’ll
look for formants (the Maximum Formant) is 5000 Hz by default.

Usually, you’ll only need to adjust the Number of Formants. Although 5 formants is a good
baseline, if Praat is finding formants where there are none (between two actual formants,
usually), you should lower this value down to 4 or 3. If Praat is finding too few formants
(missing F, and labeling F; as F,, for instance), you'll want to raise this number up to 6.

If you’re working with a child, a person of unusually small stature, or somebody with an oth-
erwise tiny vocal tract, you may find that the Praat is finding non-existent formants between
the speaker’s F; and F,, and missing the speaker’s higher formants (F; and F,) altogether. In
this situation, you’d want to increase the Maximum Formant (Hz) value to tell Praat to search
a bit higher up in the spectrum for formants, and perhaps lower the number of formants it’s
searching for.

Realize, though, that Praat can always find more peaks, and there are often small peaks not
perceptible to humans which may still have an acoustical relevance. When there are "too many
formants", Praat is not necessarily finding formants which "aren’t there", but is finding addi-
tional peaks which, although present, aren’t the F;, F, and F5 peaks which we as linguists are
chiefly interested in. When there are "too few", Praat is just giving you only the most promi-
nent peaks that you've asked for. The results of Praat’s formant tracker, in reality, are largely
determined by what you’re asking it to find, and this settings adjustment be done with a mind
to what you’re actually interested in.

Dot size (mm) simply controls how large the red dots in the formant display are. Although
changing this can be useful if the track obscures the spectrogram, this will have no effect on
your measurements.

Just remember, these settings persist even once you've closed Praat, so if you make adjustments
here, you’ll want to return these settings to the defaults when you’ve finished with your odd
speaker.

No matter your settings, Praat will happily find you formants even in fricative noise
or silence, and because it doesn’t know how many formants it should be searching
a for where, it commonly merges F, and F, for high back vowels (where they’re close
x together). In addition, Praat will often have issues finding a single timepoint, so if
you're getting an unusual measurement, a timepoint shortly before or after may be
Danger! more accurate. Always sanity-check your measurements, make sure you know what
you’re measuring, and during automated measurement, always run the results by a

trained human first!

21

6.6.3 Scripting Only: Formant Objects

If you’re not scripting, disregard this section. Working from a formant object will win you nothing
in a human-centric workflow.

When scripting, you may want to create a Formant object (select the sound, then Objects —
Formants & LPC — To Formant (burg)..., specifying the proper settings as described above) so
that you don’t need to open the editor to measure formants. Once a formant object is created,
you can instead select the Formant object and run any of the commands in the Objects — Query
menu to get information.

Oddly, formant measures taken at the same timepoint and with the same settings from a for-
mant object and from the editor window do not always agree, and in fact, can differ signifi-
cantly. If measuring formants automatically, you may consider using both methods (the formant
object and the editor window’s formant track). It often happens that if one of the measurement
tactics misses or adds a formant, the other will not, so a measure where both are in agreement is
often more trustworthy than one where they disagree significantly. The author cannot explain
the discrepancy, but is quite happy to leverage it extensively in his scripting.

6.7 Measuring Intensity/Amplitude

Measuring intensity in Praat is relatively straightforward, albeit with a major disclaimer.

To get the overall intensity of a sound, select the desired sound and run Objects — Query — Get
Intensity (dB). To get the intensity at a specific point in the sound, open it in an editor window,
Editor — Intensity — Show Intensity, and then use the various commands available in the Editor
— Intensity menu to get whatever information you desire.

By default, Praat’s display of the intensity of a word is smoothed to avoid showing individual
pulses in the amplitude lines, both in the editor window and in amplitude objects (when drawn
or viewed). This smoothing is based on the minimum FO of the sound.

If you want to see something closer the amplitude envelope of the sound in Praat (where
pulses show up individually as amplitude peaks), or if you want the amplitude curve to be
smoother than it normally would be, you must simply adjust the minimum pitch expected by
Praat. This can be done in Editor — Pitch — Pitch Settings..., as described more fully in Section
Similar smoothing/desmoothing can be accomplished when creating Intensity objects
by altering the minimum pitch value in the Objects — To Intensity... dialog box.

That said, in most recordings made for phonetic research, absolute intensity measures
as given by Praat are largely meaningless. To accurately measure the absolute intensity of
a speaker’s voice, a sound-attenuated booth with a calibrated sound level meter or calibrated
microphone with specialized software should be used.

22

Relative intensity (say, between two segments or words) can be measured with an uncalibrated
microphone, but is only accurate if the recording is made in a consistently quiet area, and
the speaker stayed in the same general position relative to the microphone throughout the
recording(s) (and wouldn’t have changed much during the time between the two points of
comparison). This issue is discussed in depth in Praat’s user manual.

6.7.1 Units of Intensity (dB vs. Pascal)

Praat uses two measures of intensity: Pascal and dB. Pascal tend to be very small numbers
(like "0.00033082594541105064") whereas dB measurements are far larger yielding numbers
like "59.23328336655995". Often, when scripting or making measurements of intensity of a
section through the interface, we want information in dB, but selecting Objects — Query — Get
mean... to get Mean intensity gives us the information in Pascal.

In order to get minimum, maximum, or mean intensity in dB, we must first convert the sound
to an intensity object:

Objects — To Intensity

Then select the intensity object and run Objects — Query — Get mean.... This will return values
in dB, as desired.

Similarly, if scripting this process:

select Sound soundname$

min = do ("Get minimum...", 0, 0, "Sinc70")
max = do ("Get maximum...", 0, 0, "Sinc70")
mean = do ("Get mean...", 0, 0, 0)

... will yield min, max, and mean intensity measurements in Pascal, whereas ...

select Sound soundname$

do ("To Intensity...", 100, 0, "yes")

min = do ("Get minimum...", 0, 0, "Parabolic")
max = do ("Get maximum...", 0, 0, "Parabolic")
mean = do ("Get mean...", 0, 0, "energy")

... will yield measurements in dB.

6.8 Working with Spectra

Sometimes, you need specific details about the frequencies and individual harmonics in a sound
at a given moment in time, and examining a narrowband spectrogram alone does not provide

23

sufficient information. In these cases, you’ll need to take a spectral slice for analysis. Spectral
slices (also referred to as FFTs or spectra) are the result of a fast fourier transform done on a very
small portion of the sound, providing you with very specific information about the frequencies
present in the sound and their relative amplitudes.

Spectral slices are useful for a variety of measures of F, nasality, creak, breathiness, and spec-
tral tilt, and are a crucial part of many measurement workflows.

6.9 Taking a spectral slice

To take a spectral slice, you’ll need to do the following:
1. Editor — Spectrum — Spectrogram Settings
2. Set Window Length to "0.025" (effectively producing a narrow-band spectrogram)
3. Editor — Spectrum — Advanced Spectrogram Settings
4. Set Window Shape to "hamming"
5. Select the point at which you’d like to see the slice taken
6. Editor — Spectrum — View Spectral Slice

This will create a new Spectrum object, and pull up a window like that in figure |5, showing
amplitude on the Y axis, and frequency (from O up to the Nyquist frequency) on the X axis. You
can zoom in and out using the buttons in the bottom left corner, as you wish.

If you've selected a portion of the sound (rather than a single timepoint) when you use Edi-
tor — Spectrum — View Spectral Slice, Praat will create a spectrum representing the average
characteristics across the entire selection, which isn’t useful for most of the spectral measures
discussed below.

6.10 Measuring Harmonic Amplitude, Frequency

Getting harmonic frequency and amplitude in a Spectrum Editor window is fairly straightfor-
ward, as clicking anywhere within the spectrum editor window will give you the frequency and
amplitude measurements at the cursor. So, to find the amplitude and frequency of a given point
in the spectrum, click that point and read off the amplitude (on the left) and the frequency (at
the top), as shown in figure

This can be done even more easily and efficiently by script, allowing you to find the highest
point on a given harmonic without clicking guesswork.

24

800 3. Spectrum FFT_922ms

File_| Edit | Query| View | Select Help,

1608.43

[42.1 dB

30.3 dB|

-17.9 dB

1608.43 3391.57
0o Window 5000.00 Hertz 5000. 17050.00 |
Total bandwidth 22050.00 Hertz

[:
[
[
&
E

Figure 5: A spectral slice Editor window

6.11 Measuring Creakiness and Breathiness using Spectral Tilt

Spectral tilt is often used in phonetic research as a measure of creak. As discussed in Gordon
and Ladefoged 2001 [3]]:

One of the major acoustic parameters that reliably differentiates phonation types in
many languages is spectral tilt, i.e., the degree to which intensity drops off as frequency
increases. Spectral tilt can be quantified by comparing the amplitude of the fundamen-
tal to that of higher frequency harmonics, e.g., the second harmonic, the harmonic
closest to the first formant, or the harmonic closest to the second formant. Spectral
tilt is characteristically most steeply positive for creaky vowels and most steeply nega-
tive for breathy vowels.

Spectral tilt is easily measured by finding H1 and H2, measuring their amplitudes as described
above, and comparing the two numbers.

6.12 Measuring Nasality using A1-PO

A1-PO0 is an acoustical measure of nasality first described by Marilyn Chen in Acoustic correlates
of English and French nasalized vowels ([[1]]). Like spectral tilt, it’s a ratio measure of the ampli-
tudes of two harmonics: A1, which is the highest harmonic peak near the first formant, and PO,
which is a low frequency harmonic (usually H1 or H2) which corresponds to a low resonance

25

in the nasal passages. See Figure [6 for an illustration of these peaks in spectra. To compute
A1-PO, you need to take three main step:

1. Find Al and measure its amplitude

Al is the highest harmonic near the frequency of the first formant.
F, can be located as described in Section [6.6]

The frequency of F; will vary from vowel to vowel, tending to be lower for high
vowels and higher for low vowels. The amplitude of Al, though, will not vary by
vowel quality

2. Find PO and measure its amplitude

PO is a specific harmonic peak which is reinforced by resonances within the nasal
passages

The frequency of PO will be specific to each speaker, and won’t change from word
to word (as the speaker’s nasal passages are unlikely to change resonant character-
istics) or from vowel to vowel.

The amplitude of PO will change from word to word, depending on the degree of
openness of the velopharyngeal port.

Although each talker is different, PO is likely to correspond to either H1 or H2 for a
given speaker

In general, for speakers with lower pitched voices, PO will be H2, and for speakers
with higher pitched voices, PO will likely be H1

The best way to identify this peak is by examining a known nasal vowel and a known
oral vowel to determine which peak is reinforced by the nasality. You may need to
examine several words before a clear winner emerges.

3. Subtract PO from Al to get the measurement

Because the nasal peak (P0) will be reinforced by the resonances in the nose during nasal vowel
production, nasal vowels will tend to have lower A1-P0O values than non-nasal vowels. Across
many tokens, A1-PO can be a very good predictor of vowel nasality, however, there are several
important things to keep in mind when using A1-PO to measure vowel nasality:

e A1-PO only works in situations where F; is higher in frequency than H1 and H2. Most of
the time, this is true, but for high vowels, A1 and PO often occur at the same place in
the spectrum, leaving the measurement useless.

3Many thanks to Dr. Rebecca Scarborough, on whose handout "Measuring Nasality (using A1-P0)" this section
is loosely based

26

Non-nasal Vowel
.A.I_- —————— EEEE————
PO .
5]
Pl ity al
(L] ' {”
<
=
LI |
of—-- .
0 1 2 5
FREQ (kHz)
(a)
i 1 T T T T
Nasal Vowel
60 ! _
POH |
Al""_N" 'L\
P].Eiw 'ﬂ-— - —-I — - - R — _ _ _
= f
o ftH—— . R 1 |
<
SO . T ,\ﬂﬂ \
i i h
- ﬂ all |
o I
O I | i =4 = . i m_
0 1 2 3 4 5

FREQ (kHz)

(b}

FIG. 2. (a) The spectrum of an oral vowel is compared with (b) the spec-
trum of a nasalized vowel from the same speaker. The spectral peaks that
determine A1, P1, and PO are labeled. The amplitudes are measured by
using the harmonic amplitudes closest to the expected peak according to
theory. A1-P1 and A1-PO0 are greater for the oral vowel than the nasal

vowel.
27

Figure 6: Figure 2 from Chen 1997 ([[1]]), showing Al and PO in oral vs. nasal vowels

— In these situations, A1-P1 (a second nasal resonance peak ~950 Hz, described in
[11]) is a better measure of vowel nasality

e A low A1-PO relative to known oral tokens is a good predictor of nasality across a large
number of tokens, but individual nasal/oral vowel pairs may or may not demonstrate
a strong effect. It should not be used to measure the nasality of one individual token
compared to another.

e A1-PO should only be examined in comparison with other tokens. An A1-PO of -2 may
be normal for an oral vowel for some speakers, but indicate extreme nasality for others.
The absolute value of A1-PO is not easily interpretable across speakers.

e Remember, here you're relying on Praat to give an accurate measurement of the first for-
mant. Feel free to tweak the formant settings, and don’t blindly trust Praat’s formant
tracker to find what linguists call the first formant and not some other spectral promi-
nence.

This is a complex measure, and I (personally) have spent a great deal of time working with it
and its measurements. Although it (alongside A1-P1) is the best acoustical approach to nasality
presently available, it is also remarkably noisy, capricious, and complex. A1-P0 nasality should
be one element of your successful analysis, not the sole element, and as I have discovered, no
nasality experiment is simple.

6.13 Measuring Spectral Center of Gravity

Spectral center of gravity (Spectral COG) is useful for measuring the frequency characteristics
of aperiodic sounds in speech (release bursts and fricatives, usually). It is most often used to
describe the production of fricatives (with the understanding that sounds with a higher spectral
COG are often produced more towards the front of the mouth), and simply measures the overall
weighting of the noise in the spectrum by reporting its "center of gravity". See Figure [/ for a
more visual demonstration. This measure can be useful in sociophonetic work, as well as in
fieldwork, for determining the articulatory positions of different fricatives.

To measure spectral COG in Praat:
1. Open the sound in an Editor window

2. Complete the steps in Section[6.9]to create a spectral slice in Praat at the point you’d like
to measure

3. Select the spectral slice in the Objects window, then Objects — Query — Get Centre of
Gravity...

28

Higher Spectral COG (/s/) Lower Spectral COG (/§/)

m o] 20
= =
))
> >
2 0 2
e 5
g
o o
o o
£ £
g e
_20<
0 2.205-10% 0 2.205-10%

Frequency (Hz) Frequency (Hz)

Figure 7: Two spectra showing the higher spectral COG for a token of /s/ (here, 8202 Hz)
compared with the lower spectral COG for a token of [[] (here, 3243 Hz)

An info window will then pop up, presenting you with the spectral COG for the point repre-
sented by the spectrum.

For further information about Spectral Center of Gravity and an example of its use in fricative
description and cross-linguistic comparison (showing the relationship between articulation and
spectral COG), refer to Gordon et al 2002 A cross-linguistic acoustic study of voiceless fricatives.
[2] For an example of this measure used in discussing gender differences in spectral COG,
refer to Jane Stuart-Smith’s Empirical evidence for gendered speech production: /s/in Glaswegian.

[4]

7 Creating and manipulating sound Files in Praat

7.1 Creating sounds from Formula

To create a sound from formula (a pure or complex tone) , you'll want to use:

Objects — New — Sound — Create sound from formula...

There, you can plug in a formula which will generate the sound you want. For instance:
To create a 1000 Hz puretone at 0.5 dB:

1. Objects — New — Sound — Create sound from formula...

“*Paul Boersma has stated in correspondence that this paper incorrectly implements Spectral COG, leading to
inconsistent results, and thus, should not be emulated. For more information, see Boersma & Hamann 2008 (from
http://www.fon.hum.uva.nl/paul/papers/BoersmaHamannPhonology2008.pdf), Footnote 7

29

e Under formula, enter 1/2 * sin(2*pi*1000x%x)
e Specify the time, sampling frequency, number of channels and such as you desire
To create a 250 Hz puretone at 1 dB:
1. Objects — New — Sound — Create sound from formula...
e Under formula, enter 1 * sin(2*pi*250%x)
e Specify the time, sampling frequency, number of channels and such as you desire
To create a complex sound with 1 dB components at 250 and 1000 Hz:
1. Objects —» New — Sound — Create sound from formula...
e Under formula, enter 1/2 * sin(2xpi*250%x) + sin(2xpi*1000xx)
e Specify the time, sampling frequency, number of channels and such as you desire

For more information, see the Praat Help guide’s excellent Formulas Tutorial. To create a sound
with harmonics, use Objects — New — Sound — Create sound from tone complex...

7.2 Cropping, Copying, Splicing and Pasting

It’s not unusual to need to move, remove, or copy sound within and across different sound files,
and luckily, Praat makes that relatively easy. Most file editing is done with a combination of
selection, copying and pasting.

However, producing quality splices is not as straightforward as copy and pasting within a word
document. Because sound waveforms are continuous, you need to make sure that all the cuts
you’re making occur at the same point in the cycle, namely, at the zero crossing. Failure to
do so will result in loud pops or clicks in the resulting file. To ensure that you'’re being zero-
crossing friendly, following the below steps (substituting "Ctrl" (the "control" key) for "Cmd"
(the "command" key) if you're using a Windows or Linux machine):

To copy/paste a portion of the soundfile:

1. Select the portion of your soundfile that you’d like to copy
Editor — Select — Move start of selection to nearest zero crossing or Cmd + ,
Editor — Select — Move end of selection to nearest zero crossing or Cmd + .
Editor — Edit — Copy or Cmd + ¢

Put the cursor where you’d like the portion to go

A

Editor — Select — Move cursor to nearest zero crossing or Cmd + 0

30

7. Editor — Edit — Paste or Cmd + p

Following these steps will cleanly insert the snippet into the word. Given time, you’ll develop
muscle memory and find yourself quickly typing "Cmd + , Cmd + . Cmd + ¢" to copy and "Cmd
+ 0 Cmd + p" to paste. Copy-pasting can be done either within the same file, or between two
different files in Praat.

This can also be done from the objects window using Objects — Convert — Extract Part

To delete a portion of a file or to remove silence, you'll select, again attending to zero crossings,
and use the "Cut" command (without pasting anywhere else):

To delete a portion of the soundfile:
1. Select the portion of your soundfile that you’d like to disappear
2. Editor — Select — Move start of selection to nearest zero crossing Cmd + ,
3. Editor — Select — Move end of selection to nearest zero crossing or Cmd + .
4. Editor — Edit — Cut or Cmd + X

Unfortunately, Praat doesn’t include an easy way to trim, splice or cut portions of the file from
the objects window, meaning that any scripts will have to use GUI scripting (the computer
controlling the mouse/selection tool) on the Editor window, telling the Editor what to select,
then to cut, etc. This works well, but is slightly less efficient than is desirable. Some progress
can be made from the Objects window alone by using a combination of Objects — Convert —
Extract Part and Objects — Combine — Concatenate to, effectively, create new sounds which
resemble a cut or trimmed sound, but this can be quite counterintuitive.

If Praat won’t let you copy and paste a chunk between two files, the files may need to be
resampled to match.

7.3 Sampling rates and Resampling

Praat is very picky about the sampling rates of the files it works with. When combining sounds
or copy/pasting from one file to another, both sounds will need to have the same sampling
rate.

To get the sampling rate of an existing file:
1. Load the sound into the objects window of Praat
2. Objects — Query — Query Time Sampling — Get Sampling Frequency

3. An info window will pop up displaying the sampling rate.

31

To resample a soundfile (e.g. change the sampling rate from 44,100 Hz to 22,050 Hz):
1. Load the sound into the objects window of Praat
2. Objects — Convert — Resample...
o New Sampling Frequency = 22050 (or whatever sampling rate you’d like)
e Precision (Samples) = 50 (don’t change this number)

3. The filtered sound will be placed into your Objects window as "Sound soundname_(new
sampling rate)"

7.4 Filtering Sounds
Not all changes you’ll want to make involve parts of files. Sometimes (for perception experi-
ments and otherwise), you'll find it necessary to filter your sound files.

Often, sounds files will have extraneous background noise, or in the case of particularly low-
frequency-sensitive microphones, room noise not blocked by sound attenuation. In those cases,
you’ll want to filter the sound file to remove it:

7.4.1 Low-pass filtering
Low-pass filters are useful for simulating high-frequency hearing loss and cellular phone
speech, among other things. They remove all signal above a given frequency.
To low-pass filter a soundfile (e.g. removing all sound above 2000 Hz):
1. Load the sound into the objects window of Praat
2. Objects — Filter — Filter (Pass Hann Band)
e From Frequency =0
e To Frequency = 2000 (or whatever you’d like your highest frequency sound to be)

e Smoothing = 20 Hz (20 Hz is a good baseline. This controls how "soft" the cutoff
is. 5 Hz is as low as you’ll ever want to go for this setting.)

3. The filtered sound will be placed into your Objects window as "Sound soundname_band"

32

7.4.2 High-pass filtering
High-pass filters are useful for removing low frequency noise from recordings (which might
seep through a sound-booth). They remove all signal below a given frequency.
To high-pass filter a soundfile (e.g. removing all sound below 2000 Hz):
1. Load the sound into the objects window of Praat
2. Objects — Filter — Filter (Stop Hann Band)
e From Frequency = 0
e To Frequency = 2000 (or whatever you’d like your highest frequency sound to be)

e Smoothing = 20 Hz (20 Hz is a good baseline. This controls how "soft" the cutoff
is. 5 Hz is as low as you’ll ever want to go for this setting.)

3. The filtered sound will be placed into your Objects window as "Sound soundname_band"

7.4.3 Band-pass (notch) filtering

Band-pass filters (also called "Notch filters") are useful for removing sound in a very specific
band of the spectrum. Notch filters are best suited for removing particular background noises
with specific frequencies (e.g. computer fans, mains hum, or chair squeaking). Your bands will
be wider or narrower depending on the signal you're working to cut out.

To band-pass filter a soundfile (e.g. removing all sound between 1500 and 3500 Hz):
1. Load the sound into the objects window of Praat
2. Objects — Filter — Filter (Stop Hann Band)
e From Frequency = 1500
e To Frequency = 3500 (or whatever you’d like your highest frequency sound to be)

e Smoothing = 20 Hz (20 Hz is a good baseline. This controls how "soft" the cutoff
is. 5 Hz is as low as you’ll ever want to go for this setting.)

3. The filtered sound will be placed into your Objects window as "Sound soundname_band"

Finally, note the Objects — Filter — Filter (Formula) option, which lets you filter sounds in a
much more specific way than the two options above provide.

33

7.5 Pitch Manipulation (To Manipulation...)

Praat does allow you to manipulate the speaker’s pitch in already-recorded sound files.
To create a manipulation object (which allows you to change a sound’s pitch and duration):
1. Load the sound into the objects window of Praat
2. Objects — To Manipulation...
e Leave Time Step unchanged
e Set the pitch range to 75-600 Hz
3. Select the newly created "Manipulation (Soundname)", then Objects — View & Edit

This will open a manipulation window (like the one shown in Figure[8). It shows you the pitch
track (in the center), as well as the waveform. The blue lines on top of the waveform represent
pulses. This window allows you to modify the duration and pitch of the sound by creating
and moving pitch points. A good first step is stylizing the pitch contour which will change the
detailed contour into something more manageable.

Manipulation — Pitch — Stylize Pitch

If you still have too many points, select a few (by selecting a part of the sound) and go to
Manipulation — Pitch — Remove pitch point(s). If you need a different pitch point, place your
cursor where you want a point and Manipulation — Pitch — Add pitch point at cursor.

You can now drag the individual green pitch points around to raise and lower the speaker’s
pitch at different points throughout the word, to great phonetic and comedic effect.

To save the result of your manipulations, use Manipulation — File — Publish Resynthesis,
and a pitch-modified copy of the sound will be placed in the Objects window to be saved as
usual.

Note as well that Praat can use either LPC resynthesis (discussed later) or "overlap-add" resyn-
thesis to create the file. "Overlap-add" is actually PSOLA (Pitch Synchronous Overlap Add
Method) resynthesis, and will almost always produce more natural results.

7.6 Matching the pitch tracks of two sounds

When combining sounds, or creating perception experiment stimuli, it can be useful to match
the pitch contours of two sounds. Although one can attempt this in the Manipulation win-
dow (as described above), it’s far easier to use the below procedure to match the pitch track
automatically.

34

800 8. Manipulation untitled

File | Edit | Query | View Select| Pulse Pitch | Dur |Synth
0.801281
H 0.7893
es
-0.7516
Pitch manip|604.4 Hz
&
126.1 Hz| W\‘M 149.3 Hze
S
25.0 Hz
Duration manip|3.000
(no duratipn points)
1.000)
0.250
0.801281 0.801281
) Visible part 1.602562 seconds 1.602562
Total duration 1.602562 seconds

Cal) Cin) Cout) (Csel) (bak) MGroup

Figure 8: The Praat Manipulation Window

To give Sound A the same pitch pattern as Sound B:
1. Load both Sound A and Sound B into the objects window of Praat
2. Trim either Sound A or Sound B so that they have exactly the same duration

e Praat will not allow you to swap the pitch tiers of sound files which are not the same
length.

3. Select Sound B, Objects — To Manipulation...
e Leave Time Step unchanged

e Set the pitch range to whatever is reasonable for that speaker. Usually 75-300 Hz
works fine.

4. Select the newly created "Manipulation B", then Objects — View & Edit
5. Select Sound B, Objects — Extract Pitch Tier

e This will give you "PitchTier B"
6. Now select Sound A, Objects — To Manipulation...

e Leave Time Step unchanged

35

o Set the pitch range to whatever is reasonable for that speaker. Usually 75-300 Hz
works fine.

7. Select the newly created "Manipulation A" as well as "PitchTier B"
8. Objects — Replace Pitch Tier

9. Select Manipulation A (which you just combined with PitchTier B), then Objects — View
& Edit

10. In the Manipulation Window, Manipulation — File — Publish Resynthesis

11. This will export a copy of the finished version into the Objects window. Save it from
there.

Praat’s pitch matching feature is only as effective as its pitch tracking feature, which

a means that both are suspect. Although the two sounds’ pitch tracks will be signifi-
H cantly closer following this step, they will not be identical, and there may be artifacts
and odd jumps left over. If you require the sounds to be exactly matched, match them

Danger!
8 both to a completely flat pitch generated by formula. (see Section

7.7 Manipulating Duration (Slowing Down and Speeding Up Sounds)

Similar to modifying pitch in existing sound files, Praat allows you to modify durations, result-
ing in sped up or slowed down sections of existing files. First, again, you'll need to create a
manipulation object:

To create a manipulation object (which allows you to change a sound’s pitch and duration):
1. Load the sound into the objects window of Praat
2. Objects — To Manipulation...
e Leave Time Step unchanged
e Set the pitch range to 75-600 Hz
3. Select the newly created "Manipulation (Soundname)", then Objects — View & Edit

This will open a manipulation window (like the one shown in Figure|8)) You'll notice that un-
derneath the pitch manipulation area, there’s a small bar labeled "Duration Manip" which starts
off saying "(no duration points)". To speed up or slow down a sound file:

1. Dur — Add Duration Point at Cursor

36

e Although it says "at cursor", adding just one point allows you to manipulate duration
for the whole file

2. Now drag that single duration point up or down in the "Duration Manip" area to change
the speed of the file

e Dragging the point up increases the duration, slowing the sound down, dragging it
down decreases duration and speeds the sound up.

You can add multiple points and selectively speed or slow certain parts of the recording (to
change the length of a vowel, for instance). In addition, as before, Praat can export the file to a
wav file, which is best done using "overlap-add" resynthesis (Objects Window — Get Resynthesis
(overlap-add)).

7.8 Matching Intensity

It's useful, especially when splicing or sound combination is occurring, to be able to ensure that
two sounds are of the same overall intensity. This is not extremely accurate, and for precise
perception studies there are more complex methods, but for most purposes, this will produce
a good amplitude match.

To scale Sound A to the same average intensity as Sound B:
1. Load both Sound A and Sound B into the objects window of Praat
2. Select Sound B, Objects — Query — Get intensity (dB)

e Make note of this number, it’s the average intensity of B

w

. Select Sound A, Objects — Modify — Scale intensity...
e Fill in the value obtained in step |2|for New Average Intensity (dB)

4. Sound A will be modified in place, overwriting the prior (unmatched) version, and can
then be saved.

7.9 Combining Sounds
There are two ways to combine two sounds using Praat. The first will sometimes work well, and
works best when both sounds are to be added equally and have the exact same file length:
To combine (overlay) Sound A and Sound B:
1. Load both Sound A and Sound B into the objects window of Praat

2. Select Sound A and Sound B together

37

3. Objects — Combine — Combine to Stereo

e This will create a new sound which has Sound A in one track, and Sound B in the
other

4. Select the sound created by the last step
5. Objects — Convert — Convert to Mono
e This will then collapse both tracks back into a single mono track

This will often work, and if it does, that’s wonderful. If you end up with odd or undesirable re-
sults from this, move onto the next section and combine the two sounds using a formula.

7.10 Formula Modification: Waveform addition, subtraction and so much more

Praat is quite capable of doing sample-by-sample mathematical operations on both individual
files and on pairs or groups of files. This is done using one of the most obtuse yet most powerful
functions available in Praat, Objects — Modify — Formula function.

Formula modification is best visualized by thinking about digitized sound. Remember that
when sound is digitized, the waveform itself isn’t saved, but instead, the waveform is sampled
(at the sampling rate), leaving you with a series of times and the amplitude of the wave at that
moment.

So, to add two digitized waveforms, you simply move through the file sample-by-sample and
compare each sample. During waveform addition, if, at the 31st sample (e.g.), the amplitude
of Waveform A is at 28 and Waveform B is at -5, you add those two timepoints together (28 +
(-5)), and in your resulting sound file, the 31st sample will have an amplitude of 23. Because
this moves sample-by-sample, both sounds will need to have the same sampling rate, and need
to be of the same length.

Unfortunately, formula combination of sounds is among the least polished of Praat’s features,
but don’t let that scare you off. To do any formula modification:

1. Load the sound(s) you’d like to modify into the objects window of Praat
2. Select the sound you’d like to modify

e Remember, this will modify the existing sound, not create a modified copy, so make
sure to make a copy of the sound to work on.

3. Objects — Modify — Formula

This will then pull up a very technical looking input box, pictured in Figure[9] To actually make
the combination, you'll need to put into that box the formula which will be applied to the

38

"~ Yala - ' Sound: Formula

| “x'is the time in seconds, “col'is the sample number.

®x =x1 |time associated with first sample
for col from 1 to ncol

self [col] = ...

X =X + dx

endfor

(Help Y (" Standards) (cancel) Apply y (0K)

Figure 9: The Praat Formula Modification Window

amplitude value of each individual sample.

To make this process a bit more clear, let’s imagine that we’ve got a file called sounda and a file
called soundb in our Objects window. You've gone through, made a copy of sounda to work
on, selected that copy, and then Objects — Modify — Formula. Here are several formulas you
could put into that window, and the effect that each of them would have:

e 0
— If you just put a "0" into the formula box, Praat would read this as "the amplitude
of the sample in question in the selected sound equals 0" (self [col] = 0). Every
sample would then be set to an amplitude of zero, and the resulting file would be
completely silent.
o 4

— If you just put a "4" into the formula box, Praat would read this as "the amplitude of
the sample in question in the selected sound equals 4" (self [col] = 4). Every sample
would then be set to an amplitude of 4, and the resulting file would be constantly at
four, and would likely stress or damage your headphones or speakers if played loudly.

e self [coll]

— Praat would read this as "the amplitude of the sample in question in the selected
sound equals the amplitude of the sample in question in the selected sound" (selff col]
= self [col]). As such, it would not modify the sound in any way, and would be a
rather complete waste of your time.

x In formulas, you'll refer to (sound) [col] frequently, which just means "each in-

39

dividual sample in the sound". "self" is the sound selected when you opened the
formula window.

e self [col]x*2

— Praat would read this as "the amplitude of the sample in question in the selected
sound equals two times the amplitude of the sample in question in the selected
sound" (self[col] = self [col]*2). This formula would double the amplitude of every
sample, making the sound file twice as loud.

e Sound_soundb [col]

— Praat would read this as "the amplitude of the sample in question in the selected
sound equals the amplitude of the sample in question in the sound file called "soundb".
This formula would turn sounda into a sample-by-sample copy of soundb.

% Note that in formulas, other sounds in the object window need to be referred to as
Sound_soundname, not just soundname.

e self [col] + Sound_soundb [col]

— Praat would read this as "the amplitude of the sample in question in the selected
sound equals the amplitude of the sample in question in the selected sound plus the
amplitude of the sample in question in the sound file called "soundb"". This formula
would add sounda and soundb using waveform addition.

* When adding, subtracting, or multiplying sounds, you’ll usually want to match
the resulting sound’s amplitude to that of the original sound afterwards (see sec-

tion|7.8).

e self [col] - Sound_soundb [col]

— Praat would read this as "the amplitude of the sample in question in the selected
sound equals the amplitude of the sample in question in the selected sound minus
the amplitude of the sample in question in the sound file called "soundb™. This
formula would subtract soundb from sounda using waveform subtraction.

e self [col] + (2% Sound_soundb [col])

— This formula would add twice the amplitude of soundb to sounda using wave-
form addition. Such a formula would be useful for combining two sounds when
you want the acoustical features of one sound to slightly overwhelm those of the
other.

Using the above as a template, you can create a formula to do nearly anything you’d like to
your sound waveform, both through the user interface or using Praat scripting.

40

7.11 Synthesizing Sounds from scratch

Praat offers the ability to synthesize sounds using a Klatt Synthesizer, an articulatory synthe-
sizer, the Vowel Editor and more. The use of these synthesizers is outside the scope of this class,
but is well explained in the Praat Documentation.

7.12 Source-Filter Vowel Resynthesis

When creating stimuli for vowel perception experiments (as well as many other times), it can
be useful to generate vowels of a controlled quality. Although Praat includes both articulatory
and cascade (Klatt) synthesis, as well as the vowel editor, sometimes, it’s important to maintain
the vocal characteristics of the recorded speaker. In these situations, you’ll want to use Source-
Filter vowel resynthesis to alter the vowel’s formant qualities without altering or replacing other
significant aspects of the signal. Source-filter resynthesis is most efficiently done by script, but
can be done step-by-step by hand if needed.

To understand both the process and the workings of source-filter resynthesis (SFR), it’s impor-
tant to understand the source-filter theory of vowel production. This understanding of vowel
production holds that a given vowel is composed of two element: the source (the voicing com-
ing from the larynx), and the filter (the articulations and anatomy of the vocal tract above the
larynx). When the source signal passes through the vocal tract, the resonances in the mouth
heighten some frequencies and damp others. In this way, a relatively unremarkable voicing
spectrum, passed through a vocal tract with an /i/ tongue shape, ends up with formants at 250
Hz, 2500 Hz, and 3000 Hz (your resonance may vary).

Source filter resynthesis takes advantage of this idea to modify vowel qualities by taking the
following steps in the abstract:

1. Take a recorded vowel and locate the overall peaks and valleys in the spectrum (the
formants) by using an LPC (linear predictive coding) algorithm

e These peaks and valleys, at least theoretically, should represent the resonances in
the mouth caused by a given tongue shape

2. Use this information to reconstruct the voicing signal (the source) without those peaks
and valleys

e This is accomplished by inverse-filtering the signal with the LPC, raising the parts
of the spectrum which the LPC says are low, and lowering the parts which the LPC
says are high. The end result, ideally, will be the source signal as if the person had
no vocal tract at all.

41

3. Alter the LPC to change the positions or bandwidths of the formants to your desired
characteristics

e By doing this, you modify the "filter", effectively changing the tongue-shape and
associated resonances used to initially produce the vowel

4. Filter the reconstructed source (created in step 2) using the altered LPC (from step 3)
Performing Source-Filter Resynthesis of a vowel in Praat:
1. Isolate a vowel in a single sound file (we’ll call it "vowela")
e Any vowel will do.
2. Select that vowel, then Objects — Formants & LPC — To LPC (...)...
e Choose whatever algorithm you prefer. Burg is my personal favorite.

3. Select both the vowel and the LPC object that’s been created (Sound vowela and LPC
vowela), then Objects — Filter (inverse)

e This will create the "neutral" source voicing from that vowel
4. Select the LPC, then Objects — To Formant
e Praat won’t let you edit an LPC object, but you can easily edit a formula object

5. To change formant frequencies, select the Formant object, then Objects — Modify — For-
mula (frequencies)...

e You'll edit this by formula (see Section|7.10), but it will always have the form if row
= [formant number] then self [modification] else self fi. So,if row =
1 then self + 100 else self fi would raise the first formant by 100 Hz.

e Changes less than 20 Hz are unlikely to work well, and changes more than 200 Hz
won’t work either. When making changes here, and while scripting, large changes
should be done in 50 Hz steps, rather than all at once, repeating the 50 Hz change as
many times as needed.

6. To change formant bandwidths, select the Formant object and the "source" generated in
step 3 and Objects — Filter

This will output your new vowel, ideally, with the new formants. That said, this is a very finicky
process with lots of room for error, and it will require some work to get working cleanly. This
is also a situation where using a good Praat script can speed things up significantly, and allow
the rapid repetition of small changes to improve output.

Given some work, though, and some time, this can be an excellent way to modify vowel quali-
ties. For examples of this in use for stimulus preparation, contact the presenter or examine the

42

author’s Establishing the Nature of Context in Speaker Vowel Space Normalization [[5]].

8 Exporting images for use and publication

To be completely honest, the fastest (and usually sufficient) means of getting images from Praat
for documents or presentation is arranging the windows to display what you’d like, and then
taking a screenshot, which can later be cropped.

However, with a bit more work, Praat can be used to create and annotate publication quality
graphs. The Praat Picture window (Figure [10) is used to create and display images.

Using the Praat picture window can be thought of as a five step process: Create an object,
choose your size, draw your object into the picture window, garnish, and export. To give a
brief example, let’s say you’d like to export a spectrogram of sounda:

1. Select sounda, Objects — Spectrum — To Spectrogram...

e Set the Spectrogram settings using the same settings you would in the Editor win-
dow (see Section [6.2))

2. Click and drag in the picture window to set the size you'd like.

e Realize that these images scale nicely, so the default usually suffices. Also, you can
create more than one graphic per picture window, just change the selection area.

3. Select the newly created Spectrogram object, then Objects — Draw — Paint...
e Set these parameters as you'd like.

4. Use the Picture — Margins menu to add labels, text, and other garnishes

5. Use Picture — File — Save as PDF file... to export your picture

e Be warned, the resulting PDFs will have very large file sizes as they capture a great
deal of detail. As such, they can be expanded and shrunken quite gracefully.

There is obviously much more complexity possible, but repeating (and adapting) the steps will
yield wonderful graphs for any publication. This entire process is quite easily scriptable, as
well.

For additional information about using Praat pictures, consult Jennifer Smith’s wonderful Print-
ing and copying/pasting Praat Images handout, available at http://www.unc.edu/~jlsmith/
ling120/pdf/5images. pdf.

43

http://www.unc.edu/~jlsmith/ling120/pdf/5images.pdf
http://www.unc.edu/~jlsmith/ling120/pdf/5images.pdf

NI

Figure 10: The Praat Picture Window

44

Vel

Waveform C

O
P AT ANR T AAW AN H\ H \\H ||
L] \

o TRV R R
orsp LUV UV UV U VYV VYV VYV

-1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time (s)

Figure 11: An example of an exported, garnished waveform plot of a 400 Hz pure tone

By creating sounds from formula (see Section and combining them together
using waveform addition and subtraction (see Section |7.10), it’s a breeze to create
the sorts of lightweight-yet-accurate waveform graphs needed when teaching and

B , testing students on the fundamentals of acoustics and waveform addition.
onus!

8.1 Creating Complex Displays

Using the Praat picture window as a canvas, you can add more detail to a graph than is avail-
able from a single command by overlaying plots and combining multiple plots into a larger
layout.

8.1.1 Overlaying Plots

You can use the Praat picture window to generate plots with multiple data types on them at
once. For instance, if you wanted to overlay a pitch trace onto a spectrogram, you would simply
draw a spectrogram (as above), and then, without changing your selection in the window,
create a pitch object and draw it, with the same "Time" boundaries as for the spectrogram.

Although it may not always make sense to do so, you use a series of draw commands to overlay
any graphics. To do this, complete the same steps above and then repeat the "draw" process
for each element, changing the color and width of lines using Picture — Pen before each draw
to help multiple plots stay distinguishable.

45

Doing this, you can represent as many different types of data on a single plot as you’d like, up
to and well beyond the possibility of any readability.

8.1.2 Multiple Plots in the Picture Window
Similarly, if you wanted to draw a waveform above a spectrogram in the picture window (sim-
ilar to the editor display), you would:
1. Select the portion of the picture window which will have your waveform
2. Select a sound, then Objects — Draw — Draw...
e Edit the parameters to "zoom" to the portion you need
3. Use the Picture — Margins menu to add labels, text, and other garnishes

4. Select the still-blank portion of the picture window which you want to contain the spec-
trogram

5. Select the sound, Objects — Spectrum — To Spectrogram...

e Set the Spectrogram settings using the same settings you would in the Editor win-
dow (see Section [6.2))

6. Select the newly created Spectrogram object, then Objects — Draw — Paint...
o Set these parameters as you'd like.
7. Use the Picture — Margins menu to add labels, text, and other garnishes
8. Use the Picture window selection to surround everything in the window for export
9. Use Picture — File — Save as PDF file... to export your picture

By doing this, you can create, entirely within Praat, a whole matrix of plots which show all the
various facets of a given sound, all without resorting to external photo editors.

9 Annotating Sound Files (Praat TextGrids)

Praat can’t reliably tell where one word starts and where another ends. Nor can it find the
specific segment you're looking for, nor identify the vowel in the word. As such, youll often
need to segment sound files with that information when using any sort of automated measure-
ments. In Praat, this is done by creating TextGrid annotations in a TextGrid file, which is saved
separately from the sound itself.

46

5000

T
_ o l'”
= \i
g mm"m’ 'n AL
2 “ b M)
A 1T o
e it ~
i NI
0 0.7134
Time (s)
0 0.7134 5000
Time (s) =
Z
Pitch (with intensity in blue) I
79500 g
~ 5
o) g
- =
: 0
2 - 0 0.7134
0.0 Time (s)
0 0.7134

Time (s)

Figure 12: You can now combine, overlay, and juxtapose plots of excess, as in the above single
Praat picture

47

TextGrid annotations are composed of different tiers which mark either intervals or specific
points within the sound file. Interval tiers are designed to mark elements of a file with a
distinct span, like a vowel, word, or segment. Point tiers mark single points, like release bursts,
turn changes, or glottal openings. Both intervals and points can (and should) be labeled. The
names and relative position of these tiers are specified when the TextGrid is created.

It's worth noting that Praat counts EVERY interval in the file, not just human-created or labeled
ones, so if you mark and label a single vowel interval in a file, Praat will consider the file to have
three intervals: the section before the start of the vowel, the marked vowel, and the section
after the vowel. The marked vowel, in this situation, would be considered interval number
2.

To create a TextGrid for a sound file...
1. Open and then select the sound that you want to TextGrid
2. Objects — Annotate — To TextGrid...

3. Name your tiers, specifying on the following line which tiers, if any, are point tiers. Tiers
will be ordered in the order named.

4. Select both the sound you’d like to annotate and the associated TextGrid, and click Objects
— View & Edit

Once your TextGrid is created, you'll be presented with the TextGrid Editor Windo(Figure .
To annotate the file...

1. Click on the tier you'd like to make an interval on

Using your mouse, select the part of the word you’d like the interval to contain
Hit the <Return> key

Click on the interval you've just created and name itlﬂ

Repeat for other intervals on the same tier, as well as any other tiers

A T i

Points are created by clicking on a point tier, placing the cursor where you’d like the point,
and hitting <Return>.

>Although the window which is opened when a sound and TextGrid are both selected and View & Edited looks a
lot like the Editor window, Praat considers it to be a very different sort of window. Any scripts added to the Editor
window (see Section[IT) will have to be added separately to the TextGrid editor window, and some menu options
present in the Editor window are not present in the TextGrid editor window.

%You can use IPA characters in TextGrid labels (provided you have the proper Unicode IPA fonts installed), but
when exporting the labels by script or elsewhere, all programs used for analysis must be Unicode aware. Most
modern programs are, but many command-line programs (such as SPSS or Python) are not, so if you're planning
to use any non-Unicode aware programs, you're best served using SAMPA or some other means of transliterating
IPA characters into ASCII text.

48

ano 4

File | Edit, Query View Select Interval Boundary Tier, SpectrumPitch Intensity, Formant Pulses Help,

0.785851

0.020610
0.3371)

-0.3712]
5000 Hz|

2031 Hz{ +

- (1/1)

[Word
2 (0]

Zan) Cin) Cout) (sel) (bak) ™ Group

Figure 13: The Praat TextGrid Editor Window

Once your file has been TextGridded as above (looking something like Figure [14), you’ll want
to save the TextGrid file (either from the Objects window (Objects — Save — Save as Text File...)
or within the TextGrid editor (TextGrid Editor — File — Save TextGrid as Text File...).

TextGridded files can then be read in by Praat scripts which measure only certain parts of the
word, can be split and labeled according to a given tier by script (see the file_segmenter.praat
script), or can simply be examined with the benefit of the labels. Once all your files have been
TextGridded, you’ll be in a much better position to start automatically measuring data and
manipulating your sound files.

10 Using Log Files

So far, all discussion of measurement has assumed you would be taking individual hand mea-
surements and writing them down on your own. These last two sections describe two ways to
more efficiently capture data from your measurements.

Praat has the ability to easily capture the measurements you take as you move through your

49

i) CinD) Cout) Csel) (bak)

Figure 14: A completed TextGrid annotation showing "Vowel" and "Word" tiers

50

data using log files, which are then easily exported into Excel (or the statistics program of your
choosing). This is useful when doing a series of repetitive measures which still require human
intervention, but in many cases, the use of Praat scripting can speed this process up further and
in some cases, eliminate the need for human intervention altogether.

To create and use a log file’]
1. Open a sound in the Editor window
2. Editor — Query — Log Settings...
(a) Choose a location and file name for Log file 1 or Log file 2

e On a Windows machine, this will look like C:\Documents and Settings\All
Users\Desktop\Log.txt

e On a Mac, this will look like /Users/yourname/Desktop/log.txt
(b) Fill in Log 1 Format and/or Log 2 Format according to what you’d like to measure:
e For duration (include the single quotes):
"t1:4’ 'tab$’ ’'t2:4' 'tab$’ 'dur:6’

— This will give you the start time (t1) and end time (t2) of a selection and
its duration (dur). (The numbers after the colons specify the number of
decimal places.)

e For formants (include the single quotes):
"t1:4' 'tab$’ 'f1:0’ ’'tab$’ 'f2:0’’tab$’ 'f3:0’

— This will give you the start time (t1) and first three formant frequencies
(f1, f2, £3) at the cursor point (like a formant listing for 3 formants).

e For pitch (include the single quotes):
"time:4' ’'tab$’ 'f0:2’
— This will give you the time (time) and fundamental frequency (F;) at the
cursor point (like a pitch listing).

(c) Close the Log Settings window

3. You can now go back to the editor window and record duration, formant frequencies, or
F, by simply selecting the relevant point or selection in the waveform (or spectrogram)
and hitting F,2 (for log 1) or Shift-F,2 (for log 2).

’Large parts of this section are taken from a handout by Dr. Rebecca Scarborough for a previous LSA institute.
All credit belongs to her.

51

e By default, each measurement will display in an Info window as well as write to the
file you set up. If you want, you can log to the log file or the Info window only by
changing the settings for Write log 1 to: or Write log 2 to: in the Editor — Query —
Log Settings... window.

4. You can modify logs to include any compatible bits of information using the following
variables:

e time : Time at cursor or at midpoint of the current selection
e tland t2: Time at beginning and end of selection

e dur : Duration of selection

e 0 : F, at cursor or average F, of selection

e f1-f5: Formant at cursor or average for selection

e bl-b5 : Formant bandwidth at cursor or average for selection
e intensity : Intensity at cursor or average for selection

e tab$: tab

11 Scripting in Praat

11.1 What is Praat scripting?

Much like a movie script tells a set of actors exactly what to say and what actions to take, a
Praat script is a text file which tells Praat exactly what to do, and walks the program through
a series of steps. Anything that you can do through the GUI of the program (GUI is "graphical
user interface", the menus and buttons you use to interact with Praat), you can command Praat
to do in a script.

Praat scripting is a wonderful tool, then, for situations where you find yourself repetitively
doing the same tasks over and over again, and with increased sophistication, you can have Praat
make simple decisions based on its measurements and changes. Simply put, Praat scripting is
a way to use the computer as a co-pilot, handling the boring, repetitive tasks independently
and allowing you to do your job more efficiently.

Praat scripts can be as simple as a single line which tells Praat to adjust the Spectrogram settings
to display a narrowband spectrogram, or as complicated as 500+ lines of code which allow
Praat to go through a folder of files, measuring A1-PO nasality for each file and presenting any
suspect measurements for human confirmation.

52

Here’s a very basic Praat script, which shows a series of commands to Praat, with commented
lines (prefaced with #) to explain what it’s doing:

This is a comment, Praat ignores lines that start with

select Sound untitled

Plays the sound

Play

Gets the duration

Get total duration

Gets the amplitude

Get intensity (dB)

Renames it

Rename... My_awesome_sound
Prints a message into the Praat information window
print "Script Finished"

Note, though, that Praat scripting isn’t the same as writing a new computer program. Praat
scripting uses the same commands as you use in the GUI, and only works within Praat, whereas
coding (say, in C) is much more opaque, but programs in C can be compiled to run on many
different devices and don’t need specific programs.

That said, there are a few things that Praat scripting cannot do:
1. Praat scripts can’t label your data or recognize speech

e Praat doesn’t know what’s being said, so you need to TextGrid annotate your files
such that Praat knows where to look for the vowel(s) or consonant(s) that you’re
interested inff

2. Praat scripts only run in Praat (although the system command can control the OS and
some other programs)

e Praat scripting only affects Praat, so you can’t incorporate a step which, say, opens
another program to run it.

3. Praat scripts can’t generate measurements as consistent as hand measurements

¢ Individual words can be odd. Humans can make small adjustments (taking the pitch
measurement just to the right of that bit of creak), but Praat doesn’t know enough
to do that.

8This can sometimes be accomplished in a more automatic (albeit error-prone) way using Forced Alignment
programs like FAVE-align (http://fave.ling.upenn.edu/usingFAAValign.html), Penn Phonetics Lab Forced
Aligner (P2FA, |http://www.ling.upenn.edu/phonetics/p2fa/), or Easy-Align (http://latlcui.unige.ch/
phonetique/easyalign.php).

53

http://fave.ling.upenn.edu/usingFAAValign.html
http://www.ling.upenn.edu/phonetics/p2fa/
http://latlcui.unige.ch/phonetique/easyalign.php
http://latlcui.unige.ch/phonetique/easyalign.php

4. Praat scripts can’t sanity-check their data

¢ You know fully well that F; for /i/ is unlikely to be at 8,000 Hz. Praat doesn’t. You
can build in safeguards, but Praat will allow all sorts of craziness if left to its own
devices.

5. Praat scripts can’t do anything that you couldn’t eventually do through the user interface
of Praat.

e Praat scripting depends on Praat’s built-in commands, so you can’t do something
that the program was not designed to do. That said, you can string many commands
together to create new commands and processes, and you can certainly make things
easier for yourself.

To do anything vaguely scripty in Praat, you’ll use the Praat menu (in the menubar on a Mac,
at the top of the objects window on a PC), and choose New Praat Script to open the scripting
editor.

11.1.1 Praat’s scripting tutorials

Perhaps the most useful part of Praat’s documentation is the Scripting tutorial, accessible
through Objects — Help — Praat Intro — Scripting or through the Script Editor window. Because
these tutorials are so excellent at explaining the peculiarities and structures of Praat’s script-
ing language, this document will skip many of the topics discussed there, focusing instead on
overall usage.

11.1.2 Praat scripts vs. Editor scripts

One small but worthwhile note is that Praat actually draws a division between scripts and
"editor scripts". They use the same syntax, the same commands, and are stored in the same way;,
but some scripts are meant to run within the Editor window (because they use the functions in
that window), and some are meant to run from the Objects window.

Simply put, if there’s a script whose function is only useful once you've already opened the
sound you care about in the editor window, it’s going to be run as an Editor script, but if a
script needs access to more than one sound, or to the functions in the Objects window, it’ll
run from the main windows. There is some flexibility here, though, as you can always use the
Edit and Editor commands to work within the editor in a Praat script, and using endeditor
can bring you back to the Objects window from an editor script.

The primary way in which this distinction matters is that you’ll open Editor scripts using the
Editor — File — Open Editor Script... option, whereas you’ll open regular Praat scripts with

54

Praat Menu — Open Praat Script....

Sometimes you’ll download a script from the internet or from a friend and it just

a won'’t run, or it'll fail in odd ways. In those situations, try running it as an Editor
x script (or as a Praat script, if you're trying it in the Editor). This is a simple step that,
if it works, can save you hours of frustration and troubleshooting, as there’s often no

Danger! . .
immediate indication how a given chunk of code was meant to be run.

11.2 Working with Scripts

Because a Praat script is literally just a text file with a series of commands to Praat, they can
be found all over the internet, and can be saved as a plaintext file (it’s best to give it the
.praat suffix, if nothing else, for your own reference). Praat scripts can be run in two distinct
ways.

11.2.1 Opening and running a Praat script

To open a Praat script in Praat and then run it:
1. Praat Menu — Open Praat Script...
e This will open the script in a Script Editor window, where it can be viewed or edited.
To open an Editor script in Praat and then run it:
1. Open the sound you’re interested in in the Editor window.
2. Editor — File — Open Editor Script...
e This will open the script in a Script Editor window, where it can be viewed or edited.
To run a script (either Editor or Praat scripts):
1. Script Editor — Run — Run (or Cmd+r, Ctrl+r on Windows)

Note that if you just want to run a small part of the script (useful when cannibalizing scripts
for certain functions), you can select the part in question and use Script Editor — Run — Run
Selection.

55

11.2.2 Making (and removing) Menu Shortcuts for scripts

Sometimes, you’ll want frequent access to a Script without having to find it, open it, then click
"Run". To do this, you can add the script to a menu. There are two options on how to do

thid}

First, you can add the script as a button on the right-hand side of the Object window (called a
dynamic menu). This will only work for Non-Editor scripts. To do this:

1. Open the Script, such that it’s available in a Script Editor window.
2. Script Editor — File — Add to dynamic menu...
3. Fill in the settings as below in the Add to dynamic menu" dialog box

e Class and Number refer to which object types and how many must be selected for the
new script button to appear. (For example, if you had a script that required a sound
and a text grid, you would put Class 1: Sound, Number 1: 1, Class 2: TextGrid,
Number 2: 1. You would leave Class 3 blank.)

e Command specifies the text that you want to appear on the button.

e After command and Depth pertain to the placement of the button. If you leave them
blank, the button will appear at the bottom of the dynamic menu.

e Script file should be filled in automatically, if you are working from a saved Praat
script.

The other option is to add your script to a pull-down menu in the Object window. (You can
follow the same directions to add an Editor script to an Editor window menu.) To do this:

1. Open the Script, such that it’s available in a Script Editor window.
2. Script Editor — File — Add to fixed menu...
3. Fill in the settings as below in the Add to fixed menu" dialog box

e Window specifies whether the command will appear in an Object window menu or
a Picture window menu.

e Menu specifies which pull-down menu the command will appear in (from the top
of the window).

e Command specifies the text that will appear in the menu.

e After command and Depth pertain to the location of the new command in the menu.
Leaving the defaults will place the new command at the bottom of the menu.

“Thanks, once again, to Dr. Rebecca Scarborough, from whose writing parts of this section are taken.

56

e Script file should be filled in automatically, if you are working from a saved Praat
script.

To remove a script from a menu, take the below stepg}
1. Praat Menu — Preferences — Buttons...

2. Choose the proper category ("Objects" for scripts in the objects window menus, "Editors"
for scripts in the Editors window menus, etc)

3. Find the script you’d like to remove
4. Click on ADDED such that it turns to REMOVED
5. Close that window, and if needed, restart Praat

Editor scripts can also be associated with one of the Script Logs (Log 3 or 4) in the "Query"
menu of the Editor window. To do this:

1. Open a sound in the Editor window
2. Editor — Query — Log Settings...
3. Type the path to the script in the Log Script 3 (or 4) box.

Once this is completed, you can use a keyboard shortcut to run your script.

Adding scripts to the Log Script slots is particularly useful for scripts which you might
run extraordinarily often, as you can then, with some additional software, set a
button on a Multi-button mouse to one of your log script keystrokes. For instance, if
you have a script that will take the current selection, create two TextGrid boundaries,
label it "vowel", then resize the view to the next interval on another tier, you could

Bonus! bind it to a log script, then just make a selection, click a mouse button, rinse and
repeat, saving countless hours.

11.3 Creating a new script

At its core, a Praat script is just a plaintext file with commands meant to be read by Praat. As

such, creating a script is as easy as saving a text file, then editing the contents. The easiest way
to do this is using Praat’s built-in Script Editor.

To create a new Praat script:

19Thanks to Kathleen Currie Hall for pointing this out during the LSA Praat workshop!

57

1. Praat Menu — New Praat Script...
2. Script Editor — File — Save

e Save it wherever you'd like on your machine, and use .praat as an extension (not
because it’s required, but because it can’t hurt, will help you remember what the
file is, and allows Praat to open the file as a script if dragged onto the Praat icon)

3. Begin writing, saving often

11.3.1 Using other text editors

Although Praat has an editor built in which is quite capable, praat scripts can be created from
within any plaintext editor. Using an external editor allows you features like syntax highlighting
(Praat script is similar to Perl in enough ways to make Perl syntax highlights vaguely useful),
always-on line numbers (because Praat gives you line numbers where your script crashed and
it’s less of a pain to just scroll than to use Script Editor — Search — Go to line...), and the sorts
of advanced find/replace tools present in more robust editors.

Some good editor choices include:

For Mac OS X:
o TextMate 2 - (Version 2 is free and open source) - http://macromates.com/
e MacVim - https://code.google.com/p/macvim/
e SublimeText - http://www.sublimetext.com

For Windows:

e Notepad ++ - |http://notepad-plus-plus.org/|- (also Scott Sadowsky’s Notepad ++
Syntax Highlighting package for Praat at|http://sadowsky.cl/praat.html#syntax)

o TextPad - $$$ - http://www.textpad.com/
e SublimeText - http://www.sublimetext.com
For Linux:

e Kate - http://notepad-plus-plus.org/ - (See José Joaquin Atria’s Kate syntax high-
lighting package for Praat at https://github.com/jjatria/praatKateSyntax)

e SublimeText - http://www.sublimetext.com

58

http://macromates.com/
https://code.google.com/p/macvim/
http://www.sublimetext.com
http://notepad-plus-plus.org/
http://sadowsky.cl/praat.html#syntax
http://www.textpad.com/
http://www.sublimetext.com
http://notepad-plus-plus.org/
https://github.com/jjatria/praatKateSyntax
http://www.sublimetext.com

11.3.2 Filenames
Praat has a few odd quirks involving filenames which you’ll need to work around in your script-
ing. First, Praat chokes on filenames with decimals in them. Be careful.

Also, absolute file paths in Praat scripts will need to be referred to differently on Windows
machines vs. on Macs:

o directory$ = "c:\Documents\test data\" (Windows)
e directory$ = "/Users/will/Documents/test data/" (Mac)
On Unix-like systems, ~ can be used to refer to the home directory (/Users/will/).

Relative file path names (relative to where the script is) do not need to change across platforms.
For instance, so if you included the below directory assignments in your script:

e directory$ = "test data/"
(or)
e directory$ ="./test data/"

Praat would always look for data in a folder called "test data", in the same folder as the script
itself. This script would function well on any operating system, provided the data is put in the
proper folderE]

a Incorrectly formatted absolute path names are the most common issue which pre-

vents you from running scripts you download from the internet. If your script
x won’t run, check the file paths throughout the script and update them to match
Danger! yOUr operating system.

11.3.3 A Note on Praat Script Commands

In the Summer and Fall of 2013, Paul Boersma has updated the Praat script language, chang-
ing the syntax of some of the commands to be more familiar to people working with other
programming languages. Although the old commands (as shown in the manual) do still work,
new commands generated by the the process will look like:

do ("To Manipulation...", 0.01, 75, 600).

... versus the old command format ...

"Thanks to Paul Boersma for pointing out this particular tip

59

To Manipulation... 0.01 75 600

Don’t be alarmed if you see this new format. It’s fairly straightforward to convert between the
two formats mentally, and old commands do still work. I have not had the time to update all
of the code in the manual for the new format, but anything you see here still works if dropped
into a script.

That said, new-style commands will cause scripts to crash in older versions of Praat. This is yet an-
other reason to download the newest version of Praat every time you start a new project.

11.3.4 How to magically write a Praat script (using the Praat "history" function)

Praat scripting relies on Commands, which are, effectively, verbs which describe the actions
Praat should take. These commands can take a variety of forms, but they usually start with an
uppercase letter (or, in newer versions, "Do ()"). Here are a bunch of Praat commands, selected
randomly from several scripts:

Rename. ..

Extract part...

Get starting point...

select

Get high index...

To Manipulation... 0.01 75 600
Get first formant

Get frequency of maximum...
Erase all

(...and many, many more)

The most beautiful part of Praat scripting comes with the realization that if you can do some-
thing through the GUI, Praat will magically give you the exact commands to do it by script. Let’s
examine this wonderful reality by unintentionally writing a Praat script, using Praat’s history
function.

First, let’s do a little bit of work in Praat, to simulate doing phonetic research:
1. Open a sound, and extract the vowel
2. Praat Menu — New Praat Script...
3. Script Editor — Edit — Clear history
Now, let’s get the duration of the sound

4. Select the sound

60

5. Objects — Query — Query Time Domain — Get Total Duration
Now, let’s get the average height of F; and F, of the sound
6. Select the sound
7. Objects — Formants & LPC — To Formant (burg)...
o This creates a formant object that we can get the mean formant values from
8. Select the new formant object
9. Objects — Query — To mean...
e This measures the mean for a given formant. Repeat this for Formants 1 and 2
Now, let’s reap what we’ve sown:
1. Go back to your Script Editor window
2. Script Editor — Edit — Paste history

If all went to plan, your Script Editor window will have something like the code pictured be-
low:

Code generated from the above process:

Edit

Extract selected sound (time from 0)
Close

Get total duration

To Formant (burg)... 0 5 5500 0.025 50
Get mean... 1 0 0 Hertz

Get mean... 2 0 0 Hertz

Each of those lines are the Praat script commands to do each of the tasks. To Formant (burg)...
0 5 5500 0.025 50 turns a sound into a Formant object, with the settings specified in the trail-
ing numbers. Get mean... 1 0 0 Hertz, intuitively enough, gets the mean of the formant
specified in the first number, in the time range specified by the next two (0 = "all"), and gives
it in Hertz (as opposed to Bark). Note, though, that because you used the mouse to do the
selection (instead of using the commands in the Editor — Select menu), the exact definition of
the selection doesn’t show up.

In short, this is the kernel of a Praat script that does everything you just did, and this is one
of the most effective ways of figuring out what commands to use in your Praat scripting. The
process is always the same:

1. Open the Script Editor

61

2. Script Editor — Edit — Clear history
3. Do, using the interface, whatever actions you’d like to get the script commands for
4. Script Editor — Edit — Paste history

By doing this, youll be able to see how to command Praat to do anything that you can do in
the GUL

11.3.5 Writing your first single-command script

Praat scripts can run the gamut between massive, 800+ line programs and single-function,
single line editor scripts. Although the massive programs are often flashiest, in many cases, the
single-item scripts are the ones you can’t live without.

First, let’s "write" a script which will turn the Spectrogram displayed in the editor window into
a Narrowband spectrogram (as described in Section [6.2.1), using the history function. To do
this:

1. Open a sound in the Editor window

Open the Script Editor and create a new script
Script Editor — Edit — Clear history

Editor — Spectrum — Spectrogram Settings

Set the Window Length to 0.025 (or the narrowband window length of your choosing)

A

Go back to the Script Editor window, then Script Editor — Edit — Paste history
7. Save the script wherever you'd like using Script Editor — File — Save

The resulting "script" will look like:

Spectrogram settings... 0 5000 0.025 50

That’s it.

Because this code works entirely with the Editor window, you’ll want to open it as an Edi-
tor script. You can use the Editor — File — Open Editor Script... command to open it and
run it from there, or you can add it to a menu (likely Spectrum) using the procedure in Sec-

tion [11.2.2]

Once you've done that, if you want to change the spectrogram type, you're only a click away.
You'll likely end up with a few of these scripts in that menu, to change the spectrogram into

62

broadband, narrowband, 0-10000 Hz broadband, and so forth. But sometimes, you need to
get a bit more complicated.

11.3.6 Scripts with Variables

Variables are constructs in programming which are just labels which store pieces of information,
either numeric or string (text). In Praat, they have a few characteristics worth notingl-ﬂ

e Variable names have to start with a lower case letter (so as not to be interpreted as
commands to the program) and must not contain spaces or start with a punctuation
mark.

e String variables (containing text) must end in the character $.

e The "="sign is used to assign values to variables (e.g., fO = 120 stores 120 in the variable
f0).

e Values for string variables must be placed in double quotes. So, to specify a file’s name:
— soundname$ = "fifteen_minutes_suzanne"

For a more concrete demonstration, let’s take another task. In Acoustic and Auditory Phonetics,
Keith Johnson provides a formula to calculate the length of person’s vocal tract based on any
formant of a neutral vowel. He gives this formula as:

L = (2n—1)c/4F,
L = Length in Meters , n = Formant Num., ¢ = the speed of sound in air (343 m/s)

Let’s say you want to calculate this more often, and grow tired of manually calculating it.
Instead, you'd like to be able to record a neutral vowel, then calculate the length based on F;
at the cursor’s location.

First, you'll need to capture the F5 value at the cursor. By using the history command, you’ll
find that the command for getting F5 at the cursor is Get third formant.

However, this normally just pops the output of the command (the F5 height) into an info win-
dow. Because we need that information to be accessible to the script, we need to capture it as a
variable. Although Praat’s tutorial on Scripting has a wonderful section on Variables, and you
should really read through that to get a full idea, in Praat, capturing the output of a command
as a variable is easy.

To assign a variable to the output of a command, you just name the variable, then put an equals
sign, then the command whose output you want to capture, like so:

12Thanks, yet again, to Dr. Rebecca Scarborough for portions of this text

63

variable = commandtogetoutput
Or, in our case:

f3height Get third formant

The above line will then capture the output of "Get third formant" and store it. So, if F3 = 2600
Hz at the cursor, once this command is run, the variable f3height will be equal to 2600.

Then, you’ll use that number in the formula above to calculate a new variable, the length of the
vocal tract. Remember, having run the first command, f3height will now be equal to the height
of F5. Praat is perfectly capable of doing basic math, so we can hard-code the other parts of
the equation into the script:

length = ((2*3 -1) * 343/(4 * f3height))
This will assign the output of ((2%x3 -1) * 343/(4 * f3height)) to the variable length.

Finally, you'll want to convert the output (length), which is currently in meters, to a more
useful unit, namely, centimeters:

lengthcm = length * 100

Then, you'll need to display this information in an information window. To do that, use the
print command.

print Your vocal tract length is ’'lengthcm:1’ cm

This command will print the sentence "Your vocal tract length is", followed by the lengthcm
variable’s contents, followed by "ecm". The : 1 attached to lengthcm rounds the output down to
one decimal point.

Put together, this is your entire script:

f3height = Get third formant

length = ((2%3 -1) * 343/(4 % f3height))

lengthcm = length * 100

print Your vocal tract length is 'lengthcm:1’ <cm

You would then save the script and either open it as an Editor script (because it relies on the
mouse cursor within the editor window when getting the third formant), or add to a menu in
the editor window. So, here, three steps of measurement and calculation are condensed into
one easy menu selection.

64

11.4 About the Praat Scripting Language

We've already talked about variables, but there are several other programming constructs used
in Praat scripting which you’ll need to know about to successfully script.

11.4.1 ‘“for’ loops

In Praat, sometimes, you’ll want to do the same thing over and over again, for, e.g. each item
on a list, or for each vowel in a TextGrid. To do this, you’ll use a for loop. For loops iterate
through large amounts of data, doing the same thing many times over and over again.

for loops have the form:

for [variable] from 1 to [another variable]
Take this action for each of them
endfor

In Praat, for loops usually have the format for [var] from 1 to [other var], followed by
an indented block, ended with an endfor (to tell Praat when to stop).

Here’s a sample script:

select TextGrid 'sounda’
number_intervals = Get number of intervals... 2
for k from 1 to number_intervals
Set interval text... 2 k Vowel
endfor

This script selects a TextGrid (named ’sounda’), gets the number of intervals in the TextGrid,
then goes through and changes the text for each interval in tier two of that TextGrid to "Vowel")

Really, though, the best way to understand for loops is to see them in action and to look through
other scripts.

It’s worth noting that, if you always plan to start from the first iteration, you can leave off the
“from 1” from the statement. So, the above could be written as:

select TextGrid 'sounda’
number_intervals = Get number of intervals... 2
for k to number_intervals
Set interval text... 2 k Vowel
endfor

and it would function identically.

65

11.4.2 “if’ statements

if statements tell Praat to take a certain set of actions only if the requested conditions are
met. This condition is usually checking whether a variable is equal to (or greater, lesser than)
a certain value, but it can get more complicated than that.

if statements have the form:

if variable = something
Take this action
endif

Here are a few example if statements that you might see in a script:

vowel_label$ = Get label of interval... 1 2

if vowel_label = "i"
Set interval text... 2 2 HighFrontVowel
endif

The above code will change the TextGrid’s label to "HighFrontVowel" only if the vowel’s label

nsn

is "i".

vowel_label$ = Get label of interval... 1 2

if vowel_label != "i"
Set interval text... 2 2 AnotherVowel
endif

The above code will change the TextGrid’s label to “AnotherVowel” only if the vowel’s label is

(1344

not “i”. As you can see, if statements are incredibly useful, and will show up constantly to
control the flow of your scripts. You’'ll learn to love them very quickly.

You can also use else and elsif to allow yourself multiple choices:

vowel_label$ = Get label of interval... 1 2

if vowel_label = "i"

Set interval text... 2 2 HighFrontVowel
elsif vowel_label = "u"

Set interval text... 2 2 HighBackVowel
else

Set interval text... 2 2 SomeOtherVowel
endif

66

3 For much of its life, Praat script used <> to mean “not equal to” (rather than the

usual !=or /= or =/=). Although recent versions (mercifully) allow the far more

H common !=to mean the same thing, be aware that older scripts will still include this
Danger! odd <> notation.

11.4.3 ‘while’ loops

while loops are meant to tell Praat to continue doing something until a certain condition is
met. Let’s say you wanted to add a second sound to a first sound over and over again until it
was 3 seconds long:

select Sound ’'soundname$’_original
while chunk_duration < 3
plus Sound ’soundname$’_addition
Concatenate
chunk_duration = Get total duration
endwhile

Here, a while loop is ideal, as it just keeps going until the criterion is reached with no further
code, muss, or fuss.

While loops are great, but Praat (especially on OS X) acts funny if it has to do

a more than a certain number of iterations, as they can quickly fill up your mem-
H ory. Especially if your while loop deals with something complex which might not
always happen, if Praat starts crashing on certain tokens, your while loops are a

Danger! 4,0d place to start looking.

11.4.4 Forms

Forms can run either at the start of the script, or during the script itself, and are your way of
getting information from the user. Forms can be used to tell the script how to run, specify op-
tions, or have the users input starting information (say, pitch ranges or the number of measures
per vowel). These let more complex scripts get user feedback before and while they do what
they do best. For an example starting form, please see Figure

Forms are created with blocks of code like the below:

form [Label for the form]
comment [what you’'re asking the user for]

67

[® 0 O Calculate A1, PO, P1 & duration for labeled vowels in files

| [Users/stylerw/cuphonetictools/Praat Tools/Nasality Automeasure v5/ |

Tiers in the TextGrid for:

voweltier: |1

wordtier: |2

Sound file extension:

file type: | .wav =

Around what frequency should | look for P1?
plsearch: 950

How many measures per vowel? (1 for midpoint only, 3 for start/mid/end)

tpnum: |5

Automaticity

autorun: () Two-Pass (GraphDump will not work)

(I Manual (Full human contral}

() Full-Auto (No Human Intervention)

Dump a PDF graph for each?
|| graphdump

Iterate Pulses, or use actual vowel?

[E iterate

Scoot in how much (in seconds) from each edge?
scoot: |0.010

| Standards | | Cancel | | Apply | E—OI(—]

Figure 15: An example of a startup form from the CU Nasality Measurement Script

68

- NaNa) [Label for the form]

[what you're asking the user for]

[your suggestion for what they type in]

[Another request, but this lets them assign a number for each choice]

vowel: |1
word: |2

[Yet another request from the user, but here, with a choice. 2 is default]

mode: () Model

(*) Mode2

[This choice is boolean, Yes vs. No, and defaults to yes]

(™ scriptisAwesome

Standards Cancel Apply | OK |

Figure 16: A form generated with the demo form code above

text directory [your suggestion for what they type in]

comment [Another request, but this lets them assign a number for each choice]
integer vowel 1
integer word 2

comment [Yet another request from the user, but here, with a choice. 2 is default]
choice mode 2
button Model
button Mode2

comment [This choice is boolean, Yes vs. No, and defaults to yes]
boolean ScriptIsAwesome Yes

endform

This code would create a form like below, in Figure
You could then use that form’s choices to make decisions later:

if mode =1

print "Your mode is set to 1"
elsif mode = 2

print "Your mode is set to 2"
endif
if ScriptIsAwesome

print "You're awesome!"

69

else
print "Someday, you’'ll be awesome"
endif

70

11.4.5 Commented lines (#)

Not every part of a Praat script is designed to be read by a computer. Lines which start with a
symbol are called Commented Lines, and will be ignored by Praat. They’re usually written
in by human programmers to explain exactly what the code is doing, or in some cases, as a
header. Do yourself a favor and comment the code that you write, as sometimes, it’s the only
way you’ll understand your code when you look at it days/months/years later.

Here’s an example of some commented code. Remember, Praat will only “see” the lines which
don’t start with #:

Now, this next chunk starts a for loop that just goes through

the above directory and keeps reading in files each time it iterates

for j from 1 to number_files
select Strings list
filename$ = Get string... 'j
Read from file... ’'directory$’’filename$’

’

At this point, we now have the variable "soundname"
which refers to the file being worked on
soundname$ = selected$ ("Sound")

11.4.6 Scaling scripts up: nowarn, noprogress, and avoiding the editor window

Lengthy praat scripts, meant to run on a great many sounds in a highly automated way, benefit
greatly in terms of speed and efficiency by reducing the number of dialogs which pop up.

If you're doing something which modifies a sound in a way that occasionally produces a tiny
bit of clipping (yielding an error message like “Advice: 2 of 34583 samples are clipped.” upon
saving), you can use the nowarn directive to save without warning. For instance:

select Sound 'soundname$’_mod

nowarn Write to WAV file... ’'directory$’output/’soundname$’_modified.wav
select TextGrid ’'soundname$’
Write to text file... ’'directory$’output/’soundname$’_modified.TextGrid

This will save the file as a .wav file, and completely ignore any errors resulting from clipping.
Mind you, this means that there will be some clipping in your file, which is a Bad Thing. One

71

or two samples may be fine, but in a production script, you’ll want to Scale Amplitude or Scale
Peaks to make that stop.

If you’re doing the same process over and over again in a highly automated fashion on a fast
machine, you’ll notice that Praat spends more time rendering the “Progress: To Pitch...” type of
dialogs than it does making the pitch file. To suppress the generation of these dialogs (letting
Praat run more silently in the background), use the noprogress directive:

select Sound ’'soundname$’_mod
noprogress To Formant (burg)... © formnum formrange 0.0256 50
noprogress To Pitch... 0 60 'crazyhighhl’

This will generate the formant and pitch objects without displaying a dialog, allowing the
process to run much more quickly than it otherwise would have. This will have the side effect of
effectively preventing the user from stopping the script mid-run (without force-quitting Praat),
but the gain in speed may offset this inconvenience.

Finally, it’s important to realize that as you're scripting, anything that actually displays on the
screen will be more resource-intensive than a background task, especially if a spectrogram
is being generated. As such, if you have the choice of doing a given process using the editor
window (Open Sound in Editor, Move cursor to point X, Get First Formant, Get Second formant,
close editor window) or creating and querying an object (To Formant..., Get Value at time 1
timepoint, Get Value at time 2 timepoint), it will certainly be faster to use an object and leave
the editor closed.

Editor scripting is great, especially as you're just starting off, but if you’re planning to run on a
large number of items, removing Editor Scripting from the mix will almost certainly result in a
speed increase over huge datasets.

11.4.7 Useful tips

These are a few tips and tricks that I learned well after they would’ve saved me hours upon hours
of time. I'm passing them along in hopes that they’ll save you the time more quickly.

e To refer to an object in the Objects window, it’s best to give both its type (Sound, TextGrid,
etc) and its name. So, instead of coding select sounda, you'll want to use select
Sound sounda.

e If your code is failing, sometimes the line numbers in the crash messages won'’t tell you
exactly how far the script is getting before it crashes. To test this, insert the word “fail” (or
anything else that isn’t a real command) into your script at a certain point. The moment
it hits that word, the script will crash, and you’ll know you've gotten that far. Then repeat

72

until you crash for some other reason. At that point, you’ll know exactly where your script
goes off the rails.

e Scripts will sometimes fail talking about a certain variable being - -undefined - -.
This usually means that you’re looking for a pitch or pulse in a place where Praat’s pitch
tracking can’t find voicing. To help prevent these failures (which will crash the entire run
of a script), you may considering adding a small block of code like the following, which
will only take a certain action if the answer is defined:

if pulse_begin_time <> undefined
Get pitch...
endif

e Once again, comment your code. If I had a nickel for every time I've opened up a script I
wrote, only to find myself unable to understand what I had written, I'd have a lot more
nickels.

e A great many issues in Praat scripting can be resolved by looking at a timepoint just 5-10
ms to either direction. Adding in a loop which, if an unreasonable measure (or an -
-undefined - -) is encountered, tries again at a nearby second timepoint, can really
increase the robustness of your scripting.

e If your script is automatically creating lots of objects, you’ll want to clean house peri-
odically. Although it’s ideal to hard-code the deletion of every item manually (select
Sound sounda, Remove), sometimes you wind up generating a large number of no-
longer-needed files. A little chunk of code along the lines of the below will do the trick
nicely:

select all

minus Sound ’soundname$’

minus TextGrid ’soundname$’

minus (whatever other files you care about)
Remove

e To check if a number is even or odd in a Praat script, use the "mod" command:

oddness = number mod 2
if oddness = 0

print "Number is even"
elsif oddness =1

print "Number is odd"
endif

73

11.4.8 Everything Else

Praat scripting takes a long time to really get your mind around, and there are all sorts of
other constructs which can be useful in working. You would be well served, once you've got
your mind wrapped around the basics, to examine the Praat Scripting tutorial pages (Objects —
Help — Praat Intro — Scripting) for some of the following concepts, which will improve your
scripting efficiency even more.

e Scripting 5.3. Jumps
— This section talks about using elsif and else to improve your script’s flow
e Scripting 5.5. Procedures

— This section talks about using Procedures to streamline your code and minimize
repetition

e Scripting 6.6. Controlling the User

— This section talks about using Pause forms to ask the user questions and to confirm
measurements.

e Scripting 7.7. Scripting the Editor

— This section will teach you how to work within the editor window in Praat scripts.

11.5 In defense of Code Cannibalism

There is very seldom any need to reinvent the wheel, and there is no shortage whatsoever
of Praat scripts available online and floating around departments. Although it’s unlikely that
you’ll happen to find a script which does exactly what you need, chances are very good that
what you need can be cobbled together from several scripts. So long as you give attribution to
the original author(s) of the script(s) you borrow code from, there’s no shame in reusing parts
of other scripts as you work on your own.

Also, it’s worth noting that one of the best ways to learn how to code is to find a script, see
how it works (in terms of what it does) by running it, and then looking at the script’s code to
find out how it does what it does. Once you've started collecting scripts, you’ll find yourself
reaching for certain chunks of code every time you, say, want to open and analyze every file in
a given folder, or need to generate a plot showing nasality in a given word.

To that end, along with this handout, there should be a script called DemoScript.praat (and
its uncommented friend, DemoScriptNoComments.praat). This is a very basic formant mea-
surement script that takes in TextGridded sound files and spits out the formant readings for

74

those files. This script was written specifically to be used for learning and cannibalism, and is
commented heavily. It’s also included as an appendix to this document.

In short, the more time you spend nosing around scripts, the better.

11.6 Closing Remarks on Praat scripting

Scripting can very quickly start to save you some time, and as such, the payoff for even a small
amount of work can be great.

However, to get really incredible results, and to trim hours off of your measurement tasks, you’ll
need to put more time in. You'll need to code, then code some more, then go steal somebody
else’s code, then re-code it because they did it wrong. Then you’ll need to spend lots of time
with Praat’s tutorials, then spend lots of time on the Praat users list. You’ll add and remove
quotes until you never want to see one again, and add loops until you’re blue in the face.

But then finally, that one script that you've been working on forever will work. You'll start it,
fill in the form, and it will run like a cheetah after a hyperactive gazelle. And it'll run the next
time. And the time after that. And each time you start up your script, it'll keep running, and
you'll see the time savings mounting.

Then eventually, you'll realize that all that time, that agony, totally paid off, and rather than
spending the afternoon taking measurements, you can just start a script running to do it for
you, then go actually enjoy your life.

That, my friends, is why we Praat script.

References

[1] M Chen, Acoustic correlates of English and French nasalized vowels, The Journal of the Acous-
tical Society of America (1997).

[2] M Gordon and P Barthmaier, A cross-linguistic acoustic study of voiceless fricatives, Journal
of the International Phonetic Association (2002).

[3] M Gordon and Peter Ladefoged, Phonation types: a cross-linguistic overview, Journal of
Phonetics (2001).

[4] Jane Stuart-Smith, Empirical evidence for gendered speech production: /s/ in Glaswegian,
Laboratory Phonology 9. Phonology and phonetics (Jane Cole and Jose Ignacio Hualde,
eds.), Mouton de Gruyter, New York, USA, August 2007, pp. pp. 65-86.

75

[5] Will Styler, Establishing the Nature of Context in Speaker Vowel Space Normalization,
vol. MA, University of Colorado at Boulder, Boulder, CO, April 2008.

76

	Version History
	Introduction
	Versions
	Other Resources
	Getting and Installing Praat

	About Praat
	Praat Windows

	Recording Sounds
	Opening and Saving Files
	Opening Files
	Working with longer sound files

	Saving Files

	Phonetic Measurement and Analysis in Praat
	Working with Praat Waveforms and Spectrograms
	Pulling out a smaller section of the file for analysis

	Adjusting the Spectrogram settings
	Narrowband vs. Broadband Spectrograms

	Measuring Duration
	Measuring Voice Onset Time (VOT)

	Examining and measuring F0/Pitch
	Measuring F0 from a single cycle
	Viewing Pitch via a narrowband spectrogram
	Using Praat's Pitch Tracking
	Improving Pitch tracking by changing the Pitch Settings
	Scripting only: Creating a Pitch Object
	Getting Maximum, Minimum, and Average pitch for a section of speech

	Measuring Pulses, Jitter, Shimmer, and Harmonics-to-noise ratio
	Measuring Formants
	Using the Formant tools in the Editor window
	Improving Formant Finding results
	Scripting Only: Formant Objects

	Measuring Intensity/Amplitude
	Units of Intensity (dB vs. Pascal)

	Working with Spectra
	Taking a spectral slice
	Measuring Harmonic Amplitude, Frequency
	Measuring Creakiness and Breathiness using Spectral Tilt
	Measuring Nasality using A1-P0
	Measuring Spectral Center of Gravity

	Creating and manipulating sound Files in Praat
	Creating sounds from Formula
	Cropping, Copying, Splicing and Pasting
	Sampling rates and Resampling
	Filtering Sounds
	Low-pass filtering
	High-pass filtering
	Band-pass (notch) filtering

	Pitch Manipulation (To Manipulation...)
	Matching the pitch tracks of two sounds
	Manipulating Duration (Slowing Down and Speeding Up Sounds)
	Matching Intensity
	Combining Sounds
	Formula Modification: Waveform addition, subtraction and so much more
	Synthesizing Sounds from scratch
	Source-Filter Vowel Resynthesis

	Exporting images for use and publication
	Creating Complex Displays
	Overlaying Plots
	Multiple Plots in the Picture Window

	Annotating Sound Files (Praat TextGrids)
	Using Log Files
	Scripting in Praat
	What is Praat scripting?
	Praat's scripting tutorials
	Praat scripts vs. Editor scripts

	Working with Scripts
	Opening and running a Praat script
	Making (and removing) Menu Shortcuts for scripts

	Creating a new script
	Using other text editors
	Filenames
	A Note on Praat Script Commands
	How to magically write a Praat script (using the Praat "history" function)
	Writing your first single-command script
	Scripts with Variables

	About the Praat Scripting Language
	`for' loops
	`if' statements
	`while' loops
	Forms
	Commented lines (#)
	Scaling scripts up: nowarn, noprogress, and avoiding the editor window
	Useful tips
	Everything Else

	In defense of Code Cannibalism
	Closing Remarks on Praat scripting

